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We investigate the adaptation of the time headways in car-following models as a function of
the local velocity variance, which is a measure of the inhomogeneity of traffic flow. We apply
this mechanism to several car-following models and simulate traffic breakdowns in open systems
with an on-ramp as bottleneck. Single-vehicle data generated by several ’virtual detectors’ show
a semi-quantitative agreement with microscopic data from the Dutch freeway A9. This includes
the observed distributions of the net time headways and times-to-collision for free and congested
traffic. While the times-to-collision show a nearly universal distribution in free and congested traffic,
the modal value of the time headway distribution is shifted by a factor of about two in congested
conditions. Macroscopically, this corresponds to the ’capacity drop’ at the transition from free to
congested traffic. Finally, we explain the wide scattering of one-minute flow-density data by a self-
organized variance-driven process that leads to the spontaneous formation and decay of long-lived
platoons even for deterministic dynamics on a single lane.

PACS numbers: 05.60.-k, 05.70.Fh, 47.55.-t, 89.40.-a

I. INTRODUCTION

One of the open questions of traffic dynamics is a mi-
croscopic understanding of the observed wide variations
in the time-headway distributions [1, 2] that are closely
related to the wide scattering of flow-density data in
the congested regime [3, 4], see, e.g., Refs. [5, 6] for an
overview. Apart from their wide variations, the aver-
age values of the time headways depend strongly on the
traffic density. For congested traffic, the modal value,
i.e., the value where the distribution has its maximum,
is larger by a factor of about 2 compared to free traf-
fic. Figure 1(a) shows a typical example obtained from
single-vehicle detector data of the Dutch freeway A9 from
Haarlem to Amsterdam.

With the increasing availability of single-vehicle data
[1, 2, 7], further statistical properties of traffic became
the subject of investigation such as the velocity variance
as a function of the traffic density [8], or the distribution
of the times-to-collision (TTC), which plays an important
role for traffic safety [9, 10].

In this paper, we therefore propose a variance-driven
adaptation mechanism, according to which drivers in-
crease their safety time gaps T when the local traffic
dynamics is unstable or largely varying. This adapta-
tion is, e.g., reflected in the empirically observed increase
of the variation coefficient V = θ/v̄ and offers a safety-

∗Electronic address: martin@mtreiber.de;

URL: http://www.traffic-simulation.de
†Electronic address: kesting@vwi.tu-dresden.de
‡Electronic address: helbing1@vwi.tu-dresden.de;

URL: http://www.helbing.org

oriented interpretation of the capacity drop, i.e., the sig-
nificant reduction of traffic flow when it becomes unstable
[11, 12, 13].

Variance-driven time headways can also qualitatively
explain the distribution of times-to-collision, which is sur-
prisingly invariant with respect to density changes (com-
pared to distance, time gap, or velocity distributions).
Times-to-collision are, therefore, not only an interesting
measure for traffic safety, but also a meaningful variable
of behaviorally-oriented traffic models based on the phys-
ical approach of invariants [14, 15].

The variance-driven increase of the safety time gap
T may also be seen as an alternative to a frustration-
driven increase of T after a long time in congested traffic
[2, 16, 17, 18]. Moreover, it potentially overcomes the
criticism of traffic models with a fundamental diagram
by Kerner [6], as it causes a pronounced platooning effect
when traffic flow is perturbed or unstable. This guaran-
tees a wide gap distribution which is the main prerequi-
site to reproduce the wide scattering of flow-density data
in congested traffic [3, 4].

Previous explanations of the wide scattering of flow-
density data include stochastic effects [19, 20], and sus-
tained non-equilibrium states caused by dynamic insta-
bilities such as stop-and-go traffic [16]. Stochastic terms
are included in most cellular-automaton traffic models
[21, 22] and also in some car-following models, e.g., in
the Gipps-model [19] or in recent car-following models
proposed by Kerner [23] or Wagner [24]. Another expla-
nation of the scattering is based on the heterogeneity of
vehicles (such as cars and trucks) and driving styles (such
as defensive or aggressive) [12, 25, 26]. However, while all
these effects can possibly account for the observed vari-
ations of time headways and times-to-collision, at least
for a given traffic density, the scattering of flow-density
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data would be smaller than observed due to the aver-
aging implied in aggregating single-vehicle data to, e.g.,
one-minute data [4].

In the next section, we will introduce the mechanism
of variance-driven time headways (VDT) in terms of a
’meta-model’ which can be applied to a wide range of
car-following models. Section III introduces a general
method to add fluctuations to car-following models. In
Sec. IV, we apply the VDT mechanism to three micro-
scopic traffic models and compare ’virtual-detector data’
directly with empirical findings. We found that this sim-

ple mechanism can semiquantitatively explain all the mi-

croscopic and macroscopic empirical findings mentioned

above. In the concluding Sec. V, we discuss the effects of
the VDT mechanism in terms of a spontaneous formation
and decay of vehicle platoons, and point to applications
in the field of traffic control and driver-assistance sys-
tems.

II. VARIANCE-DRIVEN ADAPTATION OF

THE TIME HEADWAY

We will formulate the variance-driven time headways
(VDT) model in terms of a meta-model to be applied to
any car-following model where the time headway T0 for
equilibrium traffic can be expressed by a model parame-
ter or a combination of model parameters.

The basic assumption of the VDT is that smooth traffic
flow allows for lower values of the time headway than
disturbed traffic flow where the actual time headway

T = αT T0 (1)

is increased with respect to T0 by a factor αT ≥ 1. Fur-
thermore, we characterize disturbed traffic flow (such as
stop-and-go traffic) by relatively high values of the veloc-
ity differences between following vehicles. Since a driver
in vehicle α must assess the heterogeneity of traffic flow
in situ, any measure for the heterogeneity may only de-
pend on the immediate environment. One of the simplest
measure satisfying this requirement is the local variation

coefficient

Vn =

√
θn

v̄n

(2)

where the local velocity average

v̄n =
1

n

n−1
∑

i=0

vα−i, (3)

and the local variance

θn =
1

n − 1

n−1
∑

i=0

(vα−i − v̄n)2 (4)

are calculated from the own velocity vα and the velocities
of the (n − 1) predecessors (α − i), i = 1, . . . , n − 1. For
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FIG. 1: Empirical statistical properties of cars following any
kind of vehicle obtained from single-vehicle data from the left
lane of the Dutch freeway A9 at a detector cross section 1.0
km upstream of an on-ramp. (a) Net time headway according
to Eq. (18); (b) Inverse times-to-collision according to Eq.
(19); (c) Variance coefficient Vn according to Eq. (2), as a
function of the density. In (a) and (b), the data set for ’free
traffic’ includes all single-vehicle data where the one-minute
average of velocities was above 20 m/s, and the traffic flow
above 1000 vehicles/h. ’Congested traffic’ includes all data
where the one-minute average of the velocities was below 15
m/s.

the sake of simplicity we will skip the vehicle index α
here, and in all subsequent equations. In this work, we
will set n = 5 in most cases, i.e., the adaptation of the
drivers is assumed to depend on the own velocity and the
velocities of the four nearest vehicles in front.

This quantity can be empirically determined if single-
vehicle data are available. Figure 1(c) shows an example
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for the Dutch freeway A9 between Haarlem and Ams-
terdam. Notice that, for a given local density ρ, the
variation coefficient Vn =

√
A is related to the variance

prefactor A(ρ) introduced in the macroscopic gas-kinetic-
based traffic (GKT) model [8].

Let us now assume that the multiplication factor αT of
the time headway is adapted instantaneously to a traffic
situation according to

αT = min (1 + γVn, αT supmax) . (5)

Here, αT sup max denotes the maximum multiplication
factor for the time headway for traffic flows of maximum
unsteadiness, and

γ =
1

T0

dT

dVn

(6)

the sensitivity of the time headway to increasing velocity
variations.

In summary, Eqs. (2) - (5) imply that the neces-
sary time headway for safe driving depends on the ve-
locity variance of the surrounding traffic. This propo-
sition of variance-driven time headways (VDT) can be
applied to any time-continuous car-following model in
which the time headway can be expressed by a model
parameter or a combination of parameters. Some ex-
amples are the optimal-velocity model (OVM) [27], the
velocity-difference model (VDIFF) [28], the intelligent-
driver model (IDM) [29], or the Gibbs model [19].

The VDT has three parameters, namely the number n
of vehicles used to determine the local velocity variance,
the maximum multiplication factor αT by which the time
headway is increased compared to perfectly smooth traf-
fic, and the sensitivity γ. For the special case n = 2, the
VDT acceleration depends only on the velocity difference
to the immediate predecessor, i.e., one obtains a sim-
ple car-following model depending only on the immediate
predecessor (at least, if this is the case for the underlying
car-following model). However, the model yields more re-
alistic results for a larger number of vehicles, therefore we
will assume n = 5 in all simulations (see Table I). Larger
values for n will not change the dynamics significantly.

The parameters αT and γ can be determined from em-
pirical data of the time-headway distribution for free and
congested traffic, and from the observed maximum vari-
ation coefficient Vn sup max. Figure 1 shows these data
for the Dutch freeway A9 from Haarlem to Amsterdam
[2]. Figure 1(a) shows that the locations of the maxima
(modal values) of the time-headway distributions for free
and congested traffic differ by a factor of about two. We
therefore set αT sup max = 2 in all simulations. The pa-
rameter γ can be determined by the approximate relation

γ ≈ αT sup max − 1

Vn sup max
. (7)

From Fig. 1(c) we see that Vn supmax is slightly below
0.2, so we set γ = 5 in all simulations.

Parameter Value

Number n of vehicles for determining θ 5
Time-headway multiplication factor
in unsteady traffic αT sup max 2.2
Sensitivity γ 4.0

TABLE I: Model parameters of the VDT approach used
throughout this paper for all simulated car-following mod-
els. The strength of the acceleration noise (cf. Sec. III) was
set to 0.1m2/s3.

III. ACCELERATION NOISE

Fluctuating forces in microscopic traffic models are
used to globally describe all influences that are not mod-
eled explicitly such as imperfect estimation capabilities
[14], lack of attention, or simply the fact that drivers
do not always react identically to a given traffic situa-
tion. Fluctuation terms are part of nearly all cellular
automata (the most popular example being the Nagel-
Schreckenberg model [21] and models derived from it
[30]), but are less commonly used in time-continuous car-
following models.

Since the VDT is essentially based on fluctuations of
the velocity, it is to be expected that purely deterministic
underlying models yield unrealistic results due to the lack
of an initial source triggering the fluctuations. Therefore,
we consider additional acceleration fluctuations when ap-
plying the VDT to a deterministic model.

For simplicity, we will just add a white (independent
and δ-correlated) noise term [31] to the deterministic car-
following acceleration a sup (det)α according to

v̇α = a sup (det)α(t) +
√

Q ξα(t). (8)

Here, Q denotes the fluctuation strength (cf. Table I),
and the white noise ξ(t) is assumed to be unbiased and
δ-correlated:

〈ξα〉 = 0, 〈ξα(t)ξβ(t′)〉 = Qδαβδ(t − t′). (9)

The Kronecker symbol δαβ is 1, if α = β and zero
otherwise, while the Dirac function δ(t) is defined by
∫ ∞

−∞
δ(t′) dt′ = 1 and δ(t) = 0 for t 6= 0. To clarify the

effects of the fluctuation term on the velocity, we note
that

(i) in the absence of a deterministic acceleration, Eq.
(8) leads to velocities vα(t) fluctuating stochas-
tically around the initial velocity vα(t0) with a
linearly-in-time increasing variance (random walk),

θα = Q(t − t0), (10)

(ii) under the linearized deterministic (relaxational)
dynamics a supdetα = (v0 − v)/τ (where v0 is the
desired velocity, v the actual velocity, and τ the
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FIG. 2: Simulated infrastructure and positions of virtual
detectors. The units of locations are measured in kilometers.

acceleration relaxation time), the velocity variance
of the stationary state is given by the fluctuation-
dissipation result [32]

θ = Qτ. (11)

In the explicit numerical velocity update from time t to
t + δt,

vα(t + δt) = vα(t) + aα supdetδt + ηt

√

Qδt, (12)

we have implemented the stochastic term by the additive
contribution ηt

√
Qδt, where the {ηt} are statistically in-

dependent realizations of Gaussian distributed random
numbers with zero mean and unit variance [32].

The velocity update according to (12) is numeri-
cally consistent in the stochastic sense. More precisely,
we have considered the ’numerical’ velocity distribu-
tion function F sup num(v, t) = Prob(vα(t) ≤ v) ob-
tained from many simulations with different seeds for
the pseudo-random number generator at a given time
t. We have then compared the numerical distribu-
tion function with the theoretical distribution F (v, t) =
∫ v

−∞
dv′P (v′, t) where P (v, t) is the solution to the

Fokker-Planck equation corresponding to Eq. (8),

∂P (vα, t)

∂t
+ aα sup (det)

∂P

∂vα

=
Q

2

∂2P

∂v2
α

. (13)

It turned out that the deviations between F supnum(v, t)
and F (v, t) are of the order O(δt). Notice that this means
that, for sufficiently small time steps δt, the result is
independent from δt and agrees with the analytic solution
to the stochastic differential equation (8).

We have checked this for the random walk and linear
relaxation scenarios mentioned above and found a very
good agreement between the numerical results from the
update scheme (12) and the analytical results (10) and
(11), respectively. (see Ref. [31] for a more detailed
discussion).

In summary, Eqs. (8) - (12) can be considered as
a general approach to add acceleration noise to time-
continuous deterministic car-following models. Clearly,
δ-correlated noise terms are unrealistic in many respects.
Therefore, we have also simulated more realistic time-
correlated and multiplicative noise, which clearly de-
scribes the human origins of acceleration noise better [14],
but we found no qualitative difference.

IV. SIMULATION RESULTS

In the following, we will apply the VDT to three
car-following models, namely the intelligent-driver model
(IDM) [29], the optimal-velocity model (OVM) [27], and
the velocity-difference model [28], which augments the
OVM by a term proportional to the velocity difference.
We will also simulate heterogeneous traffic consisting of
a mixture of these models.

For the purpose of reference and in order to discuss
the coupling to the VDT, we shortly present the model
equations, i.e., the acceleration functions, of these mod-
els.

The IDM acceleration v̇IDM(s, v, ∆v) of a vehicle as a
function of the (net) distance s to the predecessor, the
velocity v, and the velocity difference ∆v (positive when
approaching) is given by

v̇IDM = a

[

1 −
(

v

v0

)4

−
(

s∗

s

)2
]

(14)

with the ’desired dynamical distance’

s∗ = s0 + vT +
v∆v

2
√

ab
. (15)

The acceleration of the optimal-velocity and velocity-
difference models is given by

v̇OVM =
vopt − v

τ
− λ∆v (16)

where λ = 0 for the OVM and the ’optimal velocity’ is
given by

vopt =
v0

2

[

tanh
( s

L
− β

)

− tanh(−β)
]

. (17)

The coupling (1) of the VDT to the IDM is simple, since
the desired time headway T is already an IDM parame-
ter. We used T = T0 = 0.7 s as minimum value which
can be increased up to T = 1.54 s corresponding to
αT sup max = 2.2 (cf. Table I). To find an appropriate
coupling of the VDT to the OVM and VDIFF models,
we note that the parameter L defines a typical interac-
tion range and, consequently, the desired time headway
s/vopt(s) is essentially proportional to L/v0 in these mod-
els. Therefore, we coupled the VDT to the OVM and the
VDIFF models by setting L = L0αT with αT according
to Eq. (5).

In order to distinguish between freely moving and fol-
lowing vehicles, we need at least two vehicle types (’cars’
and ’trucks’) with different desired velocities v0. For all
models, we have set v0 = 35 m/s for ’cars’, and v0 = 25
m/s for ’trucks’ and simulated a truck percentage of 20%.
Notice that v0 is a common parameter of all three mod-
els. Because we want to introduce as little complexity
as possible, we did not distinguish cars and trucks with
respect to other parameters. Furthermore, we used the
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same vehicle length lveh = 5 m for both vehicle types in
all simulations.

The remaining IDM parameters are the minimum gap
s0 = 3 m, the acceleration a = 1 m/s2 , and the comfort-
able deceleration b = 1.5 m/s2 . For the OVM, we used
the relaxation time τ = 0.4 s and the form factor β = 1.
Furthermore, we set the interaction length L0 = 13 m
for cars and L0 = 10 m for trucks. Thus, the effective
time headway is about the same for both types. For the
VDIFF, we used the same values for L0 and β as for
the OVM. Furthermore, we used τ = 2 s and the sensi-
tivity coefficient λ = 1 s−1. For all models, we set the
fluctuation strength Q = 0.1 m2/s3. For comparison, we
simulated also the deterministic VDT-IDM for which the
fluctuation strength is Q = 0. The parameters were cho-
sen such that the traffic dynamics was comparable to the
Dutch freeway A9 freeway data with respect to the form
of the fundamental diagram, capacity, and stability.

We have simulated a single-lane road section of total
length 15 km with an on-ramp of length Lrmp = 200 m
located at xrmp = 12 km (Fig. 2) from which a constant
flow of 400 vehicles/h merges to the main road. To keep
matters simple, we have avoided explicit modeling of the
merging of ramp vehicles to the main road. Instead, we
have inserted the ramp vehicles centrally into the largest
gap within the 200 m long ramp section. In order to gen-
erate a sufficient velocity perturbation in the merge area,
the speed of the accelerating on-ramp vehicles at the time
of insertion was assumed to be 50% of the velocity of the
respective front vehicle. It turned out that the perturba-
tions induced by the slower merging vehicles were crucial:
When simulating merges with the same velocity as the
main road vehicles, the onset of traffic breakdown was
markedly delayed indicating the role of perturbations for
traffic optimization (see Sec. V below).

We initialized the simulations with very light traffic of
density ρ = 3 vehicles/km and an initial velocity of 100
km/h. The details of the initial conditions, however, are
not relevant unless they lead to an immediate breakdown
of traffic flow. To generate congestion, we have increased
the inflow of vehicles to the main lane linearly from 300
vehicles/h at t = 0 s to 3000 vehicles/h at t = 2400
s. Afterwards, we decreased the inflow linearly to 300
vehicles/h until t = 4800 s. In case the inflow exceeded
capacity, we delayed the insertion of new vehicles at the
upstream boundary.

The update time step of the numerical integration
scheme was δt = 0.05 s for all models. Runs with smaller
time steps yielded essentially the same results.

A. Time-headway distribution

Empirical investigations of single-vehicle data have
shown that the distributions of net time headways differ
markedly in free and congested traffic situations [2, 7],
see Fig. 1.

To enable direct comparisons with experimental work,
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FIG. 3: Distribution of the net time headways of cars follow-
ing any kind of vehicle (cars or trucks) obtained from single-
vehicle data of ’virtual detectors’ at various positions for sim-
ulations of the VDT with (a) the IDM; (b) the OVM; (c) the
VDIFF model.

we have implemented ’virtual detectors’ at x = 8 km and
10 km (cf. Fig. 2) recording the passage time tα, type
(car or truck) and velocity vα of each vehicle α crossing
the detector. We estimated the net time headway Tα by
the time interval between the passage of the rear bumper
of the preceding vehicle (α− 1) and the front bumper of
the vehicle under consideration,

Tα = tα − tα−1 −
lα−1

vα−1

. (18)

Figure 3 shows the simulated distribution of Tα for
the faster vehicle type (’cars’ following any vehicle type)
separately for free traffic (vα > 15 m/s) and congested
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FIG. 4: Distribution of the net time headways of cars for the
deterministic VDT-IDM.

traffic (vα ≤ 12 m/s). We have obtained the following
main results:

• The modal value (location of the maximum of
the probability density) of the time headway is
markedly higher (about twice as high for the VDT-
IDM) in congested traffic compared to free traffic.

• The values for Tα form a broad and asymmetrical
distribution.

• The different underlying models, particularly deter-
ministic and stochastic variants, yielded the same
qualitative results. Remarkably, the velocity vari-
ance depends only weakly on the noise.

Notice that the VDT only prescribes that the time head-
way increases with the variance. The dependence of the
variance (and thus the average time headway) on the traf-
fic situation results from the traffic dynamics. Moreover,
all statistical data were obtained from identical vehicles
(the ’cars’). Since all cars have the same unique equi-
librium relation between velocity and net distance s, the
wide and bimodal distributions are an interesting result,
particularly for the deterministic case.

Nevertheless, the peaks of the simulated distributions
are higher and sharper that those in the empirical data
(cf. Fig. 1) The lacking quantitative agreement in this
case can be explained by the wide variation of individu-
ally preferred time headways of drivers, i.e., in the varia-
tions of the driving style [4], which was neglected in our
simulation for reasons of simplicity. To test this assump-
tion, we have simulated a mix of all three models. The
resulting time-headway distribution for congested traf-
fic and the variance as a function of the density repro-
duces the observed data nearly quantitatively as shown
in Fig. 5.

For the sake of simplicity, we will, however, not incor-
porate heterogeneity in the rest of this work.
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FIG. 5: Distribution of time headways for the VDT with a
mix of 1/3 IDM, 1/3 OVM, and 1/3 VDIFF vehicles (truck
percentage 20% in each model).

B. Times-to-collision

Further dynamic microscopic aspects of traffic can be
captured by the ’times-to-collision’ (TTC) τα sup TTC
which is defined as the time interval after which a vehicle
α would collide with its predecessor provided no decel-
eration would take place. Negative TTC values denote
’virtual’ collisions in the past. We extract the value of
τ sup TTCα from the single-vehicle data by the relation

τ sup TTCα =
sα

vα − vα−1

≈ Tαvα−1

vα − vα−1

, (19)

where sα is the net distance inferred from the data.
Instead of plotting distributions of the TTC directly,

we present, in Fig. 6, distributions of the inverse of the
TTC, which we denote as ’relative approaching rate’

rα = 1/τ sup TTCα. (20)

This has the advantage that the interesting range of small
positive and negative values of the TTC is magnified and
there is no divergence for the equilibrium state, i.e., vα =
vα−1. We have obtained the following main results:

• Both in the models and in the empirical data (cf.
Fig. 1), the distribution is nearly symmetrical with
respect to positive and negative values of rα.

• For the OVM and VDIFF, the width of the dis-
tribution is nearly the same for free and congested
traffic, in agreement with the empirical data, while
the variance of the IDM distribution is too small
for free traffic.

• For the IDM, the peaks of the distribution are lo-
cated at rα = 0 (i.e., equilibrium traffic is the most
probable state, in agreement with the data) while
the peak for congested traffic is shifted towards neg-
ative times-to-collision in the other two models.
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FIG. 6: Distribution of the inverse (vα − vα−1)/sα of the
times-to-collision as calculated from single-vehicle data of vir-
tual detectors for the VDT using (a) the IDM; (b) the OVM;
(c) the VDIFF.

The main difference of the IDM with respect to the other
models are the order of magnitude of the accelerations.
While the IDM acceleration (whose order is given by the
parameters a and b) did not exceed ±4m/s2 , the OVM
acceleration varied between −16m/s2 and 7 m/s2 , and
the VDIFF accelerations between −9 m/s2 and 5 m/s2 .
Since the determination of rα from single-vehicle data via
the Eqs. (19) and (20) is only exact for zero accelerations,
this is a possible explanation for the asymmetry in the
simulation.

V. DISCUSSION

In the variance-driven time headway (VDT) model put
forward in this paper, the desired safety time headway is
a dynamic variable increasing with the local velocity vari-
ance. This provides a mechanism for a spontaneous for-
mation and decay of long-lived but non-permanent pla-
toons: If traffic flow is stable, initial velocity differences
decrease, leading to decreased values of the local variance
and thereby to low values of the desired time headway
and a high dynamic road capacity. Because of the conser-
vation of the vehicle number, this automatically leads to
platoons and to large gaps in front of the slowest vehicles
(’trucks’). For sufficiently high traffic demands the short
time gaps may result in unstable traffic flow, leading to
higher values of the variance. This, in turn, causes spon-
taneous braking maneuvers of the drivers which further
increase the velocity variance. Finally, this breaks up
the whole platoon resulting in a traffic breakdown with
a distinct capacity drop.

Our intention is to propose a simple model for this
variance-driver mechanism. Therefore, we have ne-
glected, e.g., finite reaction times or more elaborated con-
cepts of anticipation which are contained, for example, in
the human driver model (HDM) [14]. Furthermore, we
have modeled fluctuations in the simplest possible way.

In the following, we want to discuss our main results
in the light of the ’VDT mechanism’:

• The distribution of time headways in free traffic
is broad and asymmetric both in the determinis-
tic and stochastic cases, although all vehicles (cars
and trucks) have the same time-headway param-
eter. The reason is that the time headway de-
pends dynamically on the velocity variance. Conse-
quently, even the deterministic driver-vehicle units
do not have a unique fundamental diagram.

• The averaged time headway in congested traffic is
almost twice of that in free traffic (Figs. 1 and 3),
which is related to the higher values of the velocity
variation coefficient for congested traffic compared
to free traffic.

• Apart from the IDM, the distribution of the relative
approaching rates (inverse of the times-to-collision)
is nearly independent of whether traffic is free or
congested. This is a result of several antagonistic
effects: In congested traffic, the velocity correlation
rvα,vα−1

between neighboring vehicles, the variation
coefficient V , Eq. (2), and the time headway T ,
Eq. (1), are all higher than in free traffic. In the
approximate expression for the standard deviation
of the relative approaching rate defined in Eq. (20),

√

〈r2
α〉 =

V (1 − rvα,vα−1
)

T
, (21)

these three influences essentially cancel out each
other for suitable parameter choices.



8

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70

F
lo

w
 Q

 (
1/

h)

Density ρ (1/km)

(a) x=  8 km
x=10 km

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70

F
lo

w
 Q

 (
1/

h)

Density (1/km)

(b) x=  8 km
x=10 km

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70

F
lo

w
 Q

 (
1/

h)

Density ρ (1/km)

(c) x=  8 km
x=10 km

FIG. 7: Simulated flow-density data of the VDT applied to
the IDM at two ’virtual detectors’ with a sampling interval of
Taggr = 60 s (a) with fluctuations; (b) without fluctuations;
(c) without fluctuations and on-ramp vehicles merging with
the speed of the vehicles on the main road rather than half of
it as in (a) and (b).

• On a macroscopic level, the VDT reproduces the
wide scattering of data points in the flow-density
diagram calculated from one-minute data (Fig. 7),
and the capacity drop at the transition from free to
congested traffic (Fig. 7(a)).

In presenting our simulation results, we have emulated
the available data analogously to real traffic data. For
example, we did not use the full information of all vehi-
cle trajectories for plotting the spatiotemporal dynamics
of the velocity. Instead, we have restricted ourselves to
’virtual detectors’, as this approach allows a direct com-
parison with empirical traffic data.

We note that an understanding of the effects of the ve-
locity variance is crucial for devising measures to avoid
traffic breakdowns: The VDT feedback mechanism is
triggered most likely near sources of sustained veloc-
ity variations, for example in the merging, diverging, or
weaving zones near freeway intersections, but also the
noise term plays a role. To illustrate that, we have intro-
duced a sustained velocity perturbation in all simulations
of Sec. IV and in Figs. 7(a) and (b) by letting acceler-
ating ramp vehicles merge with only half the velocity of
the vehicles on the main road. In simulations where the
ramp vehicles entered with the speed of the vehicles on
the main road, we observed a markedly delayed traffic
breakdown occurring only after a traffic-flow peak near
3000 vehicles/h instead of 2500 vehicles/h, cf. Fig. 7(c).
The subsequent breakdown, however, was more severe
showing not only ’synchronized traffic’ but also jammed
traffic with nearly vanishing flows. Eliminating the noise
term alone had a smaller effect (Fig. 7(b)).

Thus, it is essential to avoid merging and diverging
maneuvers at high velocity differences, e.g., by increasing
the length of the acceleration lane at on-ramps and off-
ramps. Another measure to reduce the velocity variance
are speed limits which can be simulated with the VDT as
well. Furthermore, since lane changes constitute another
source of velocity variance, we expect a strong coupling
of lane changes to the longitudinal dynamics by the VDT
mechanism. In particular, a multi-lane generalization of
the VDT [33] might yield a fully quantitative explanation
of bottleneck effects introduced by weaving zones and off-
ramps.

Finally, the distinct increase of the time headways
after traffic breakdown opens up vehicle-based options
to increase traffic performance and stability by means
of adaptive-cruise control (ACC) systems. Such driver-
assistance systems, which accelerate and brake automat-
ically depending on the distance to the preceding vehi-
cle and its velocity, are already commercially available
for some upper-class vehicles. By a suitable strategy for
varying the time headways of ACC systems as a function
of the traffic situation, the unfavorable human behavior
can be partially compensated for. First simulations of
such ACC-systems show promising results [34].

Acknowledgments: The authors would like to thank
for partial support by the Volkswagen AG within the
BMBF project INVENT.



9

[1] L. Neubert, L. Santen, A. Schadschneider, and
M. Schreckenberg, Phys. Rev. E 60, 6480 (1999).

[2] B. Tilch and D. Helbing, in Traffic and Granular Flow

’99, edited by D. Helbing, H. Herrmann, M. Schrecken-
berg, and D. Wolf (Springer, Berlin, 2000), pp. 333–338.

[3] B. Kerner and H. Rehborn, Phys. Rev. E 53, R4275
(1996).

[4] K. Nishinari, M. Treiber, and D. Helbing, Phys. Rev. E
68, 067101 (2003).

[5] D. Helbing, Review of Modern Physics 73, 1067 (2001).
[6] B. S. Kerner, The Physics of Traffic. Empirical Freeway

Pattern Features, Engineering Applications, and Theory,
Understanding Complex Systems (Springer, Heidelberg,
2004).

[7] W. Knospe, L. Santen, A. Schadschneider, and
M. Schreckenberg, Phys. Rev. E 65, 056133 (2002).

[8] M. Treiber, A. Hennecke, and D. Helbing, Phys. Rev. E
59, 239 (1999).

[9] S. Hirst and R. Graham, in Ergonomics and Safety of

Intelligent Driver Interfaces, edited by Y. Noy (Lawrence
Erblaum Associates, New Jersey, 1997).

[10] M. M. Minderhoud and P. H. L. Bovy, Accident Analysis
& Prevention 33, 89 (2001).

[11] F. Hall and K. Agyemang-Duah, Transportation Re-
search Record 1320, 91 (1991).

[12] C. Daganzo, M. Cassidy, and R. Bertini, Transportation
Research B 33, 25 (1999).

[13] B. Kerner and H. Rehborn, Phys. Rev. Lett. 79, 4030
(1997).

[14] M. Treiber, A. Kesting, and D. Helbing, to be published
in Physica A (2005), doi:10.1016/j.physa.2005.05.001.

[15] H. Lenz, C. Wagner, and R. Sollacher, European Physical
Journal B 7, 331 (1998).

[16] M. Treiber and D. Helbing, Phys. Rev. E 68, 046119
(2003).

[17] M. Treiber and D. Helbing, Explanation of observed

features of self-organization in traffic flow, e-print

cond-mat/9901239.
[18] L. Neubert, L. Santen, A. Schadschneider, and

M. Schreckenberg, in Traffic and Granular Flow ’99,
edited by D. Helbing, H. Herrmann, M. Schreckenberg,
and D. Wolf (Springer, Berlin, 2000), pp. 307–314.

[19] P. G. Gipps, Transp. Res. B 15, 105 (1981).
[20] M. Brackstone and M. McDonald, Transp. Res. F 2, 181

(1999).
[21] K. Nagel and M. Schreckenberg, J. Phys. I France 2, 2221

(1992).
[22] W. Knospe, L. Santen, A. Schadschneider, and

M. Schreckenberg, Phys. Rev. E 70, 016115 (2004).
[23] B. S. Kerner and S. L. Klenov, J. Phys. A: Math. Gen.

35, L31 (2002).
[24] P. Wagner (2004), cond-mat/0411066.
[25] M. Treiber and D. Helbing, J. Phys. A 32, L17 (1999).
[26] D. Helbing and M. Treiber, Cooper@tive

Tr@nsport@tion Dyn@mics 1, 2.1 (2002), (Internet
Journal, www.TrafficForum.org/journal).

[27] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and
Y. Sugiyama, Phys. Rev. E 51, 1035 (1995).

[28] R. Jiang, Q. Wu, and Z. Zhu, Phys. Rev. E 64, 017101
(2001).

[29] M. Treiber, A. Hennecke, and D. Helbing, Physical Re-
view E 62, 1805 (2000).

[30] D. Chowdhury, L. Santen, and A. Schadschneider,
Physics Reports 329, 199 (2000).

[31] D. Helbing and M. Treiber (2003), cond-mat/0307219.
[32] C. Gardiner, Handbook of Stochastic Methods (Springer,

N.Y., 1990).
[33] M. Treiber and D. Helbing, in ASIM 2002, edited by
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