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We formulate several key aspects of human driving dynamics based on a wide class of time-
continuous microscopic traffic models. In the underlying models such as the intelligent-driver model
(IDM) or the optimal velocity model, the acceleration response is instantaneous and depends only
on the own vehicle and its predecessor therefore resembling (semi-)automated driving rather than
human driving. We propose generalizations to include the essential differences of human drivers
with respect to these models, specifically (i) finite reaction times, (ii) errors in estimating the
input variables, (iii) looking several vehicles ahead (spatial anticipation), (iv) estimating the future
traffic situation (temporal anticipation), and (v) long-term adaptation to the global traffic situation
(memory effect). By means of simulations with the IDM as base model we show that the destabilizing
effects of reaction times and estimation errors can be offset to a large extent by the spatial and
temporal anticipations resulting in the same stability and qualitative macroscopic dynamics as
that of the IDM. Accident-free smooth driving is possible even for reaction times exceeding the
time headway. An analysis of virtual detector data of simulated congested traffic shows that the
combined effect of the anticipations lead to smaller velocity gradients and, in case of oscillating
congested traffic, to longer periods of the oscillations, in agreement with real traffic. Furthermore,
the model allows to simulate the transition free traffic → synchronized traffic → traffic jams and to
reconcile the three-phase theory proposed by Kerner with the phase diagram proposed by Helbing.

PACS numbers: 05.60.-k, 05.70.Fh, 47.55.-t, 89.40

I. INTRODUCTION

The nature of human driving behaviour and the dif-
ferences to automated driving that is implemented im-
plicitely by most micromodels is a controversial topic in
traffic science [1–3]. Finite reaction times, finite estima-
tion capabilities and limited attention spans impair the
human driving performance and stability with respect
to automated driving, sometimes called adaptive cruise
control (ACC). However, unlike machines, human drivers
routinely scan the traffic situation several vehicles ahead
(“multi-anticipation” [4–6]) and anticipate future traf-
fic situations [7] leading, in turn, to an increased stabil-
ity. The question arises how these antagonistic effects
affect the overall driving behaviour and performance,
and whether, in typical situations, the stabilizing or the
destabilizing effects dominate, or if they effectively cancel
each other. The answers to these questions are crucial in
determining the influence of the growing number of ve-
hicles equipped with automated acceleration controls on
the overall traffic flow. Up to now, there is not even clar-
ity about the sign of the effect. Some investigations pre-
dict a positive effect [8] while others are more pessimistic
[9] CHECK Literatur, v.a. TRB
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been investigated in the past. For example, it is well
known that traffic instabilities increase with the reac-
tion times of the drivers. Finite reaction times in time-
continuous micromodels have been modelled as early as
1961 by Newell [10] and, recently, the optimal-velocity
model (OVM) [11] has been extended to include finite
reaction times [12]. However, the Newell model has no
dynamic velocity, and the OVM with delay turned out
to be accident-free only for irrealistically small reaction
times [13]. To overcome this deficiency, Davis [7, 14]
introduced (among other modifications) an anticipation
of the expected future gap to the front vehicle allowing
accident-free driving at reaction times of 1 s. However,
reaction times were not fully implemented in [7, 14] since
the own velocity, which is one of the stimuli on the right-
hand side of the acceleration equation, has been taken
at the actual rather than at the delayed time. Further-
more, in some traffic situations such as stop-and-go traf-
fic, after active or passive lane changes, or when simply
accelerating on an empty road, the OVM leads to unre-
alistically high accelerations (of the order of v0/τ = 30
m/s2for typical values v0 = 30 m/s for the desired ve-
locity and τ = 1 s for the velocity relaxation time). To
our knowledge, there exists no car-following model ex-
hibiting string stability for reaction times (with respect
to all stimuli) exceeding half of the time headway of the
platoon vehicles. Human drivers, however, accomplish
this easily. In dense (not congested) traffic, the most
probable time headways are 0.9-1s [15] which is of the
same order as typical reaction times [? ]. SUCHE Ref-
erenz, in Transp. Res. F oder in Referenzen der
Davis-Paper

Possibly, human drivers achieve this stability by con-
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sidering not only the vehicle immediately in front but also
to next-nearest neighbours and further vehicles ahead
which we will denote by ”spatial anticipation” or “multi-
anticipation” [4]. Spatial anticipation has been applied to
the OVM [4] and to the Gipps model [5] As expected, the
resulting “multi-anticipativ” models show more stability
compared to the original model. However, the stabil-
ity of the aforementioned models is yet less than that of
human drivers. Furthermore, some unrealistic behaviour
emerge such as too high backwards propagation velocities
(vg = −30 km/h) of perturbations in congested traffic [4].

Besides reacting to the immediate traffic environment,
human drivers adapt their driving style on a longer time
scale to the traffic situation [16] such that the actual
driving style depends on the traffic conditions of the last
few minutes (memory effect [17]). For example, most
drivers increase the time headways to the leading vehi-
cle after some time in congested traffic [16, 18] which
is sometimes termed “resignation effect” [19, 20]. dop-
pelter Eintrag “Katsu03” in der Datenbank. Ein
Beitrag bezieht sich auf cond-mat; diesen bitte in
“Katsu03-condmat” umbenennen

Imperfect estimation capabilities often serve as motiva-
tion or justification to introduce stochastic terms into mi-
cromodels such as the Gipps model [21] (see also [1, 22]).
Most cellular automata require fluctuating terms as well.
In nearly all the cases, fluctuations are assumed to be
δ-correlated in time and acting directly on the accelera-
tions. An important feature of human estimate errors,
however, is a certain persistency. If one underestimates,
say, the distance at time t, the propability of underesti-
mating it at the next time step (which typically is less
than 1 s in the future) is very high as well. We are not
aware of any work where this obvious temporal correla-
tion has been taken into account.

In this paper, we propose a human driver model
(HDM) that incorporates all of the above aspects. The
model allows accident-free driving with realistic acceler-
ations in nearly all traffic situations (including driving
on empty roads and approaching standing obstacles) for
reaction times of the order of and even slightly exceeding
the time headway. On a macroscopic level, the model can
produce all the congested traffic phases of the phase dia-
gram of Helbing and Treiber [23] but also the transition
“free traffic → synchronized traffic → jams” proposed by
Kerner [24] thus possibly allowing to reconcile the two
opposing views [25].

In Sec. II, we formulate the HDM in terms of exten-
sions for a class of micromodels where the acceleration
is a continuous function of the velocity, the gap, and the
velocity of the preceding car. We use the intelligent-
driver model (IDM) [26] as underlying model since it has
already a built-in anticipative and smooth braking strat-
egy and scored best in a first independent attempt to
benchmark micromodels on real traffic data [27]. Other
popular models which may serve as underlying model are
the OVM [11], the Gipps model [28] or the boundedly ra-
tional driver model [29, 30].

In Sec. III we simulate the stability of vehicle platoons
as a function of reaction time T ′ and number of antici-
pated vehicles na and found string stability for arbitrar-
ily long platoons for reaction times of up to 1.5 s. We
show that both spatial and temporal anticipations play a
crucial role. Furthermore, we simulate the macroscopic
effects for an open system containing a flow-conserving
bottleneck [26, 31, 32]. We found that multi-vehicle an-
ticipation (na > 1) can offset the destabilizing effects
of reaction times and estimate errors and plot a phase
diagram for the corresponding parameter space. When
increasing simultaneously T ′ and na such that the sta-
bility is constant, we found that the wavelength of stop-
and go waves increased and the fronts between free and
congested traffic became smoother, in accordance to ob-
servations.

In the concluding Section IV we suggest applications
and further investigations and discuss some aspects of
human driving that are not included in the HDM.

II. MODELLING HUMAN DRIVING

BEHAVIOUR

In this paper, we use the intelligent-driver model
(IDM) [26] as underlying micromodel. We will formu-
late the various aspects of human driving in a model-
independent way, so other longitudinal time-continuous
micromodels such as the optimal-velocity model [11] or
the Gipps model [21] can be applied as well. Further-
more, we restrict to single-lane traffic here. Lane-change
related aspects of human driving will be investigated in
a forthcoming work.

In the following, we recapitulate shortly the most im-
portant aspects of the IDM. In this model, the accelera-
tion of each vehicle α is assumed to be a continuous func-
tion of the velocity vα, the netto distance gap sα, and the
velocity difference (approaching rate) ∆vα to the leading
vehicle:

v̇α = a

[

1 −
(

vα

v0

)4

−
(

s∗(vα,∆vα)

sα

)2
]

. (1)

This expression is an interpolation of the tendency
to accelerate with af (v) := a[1 − (v/v0)

4] on a free
road and the tendency to brake with deceleration
−bint(s, v,∆v) := −a(s∗/s)2, when vehicle α comes too
close to the vehicle in front. The deceleration term de-
pends on the ratio between the effective “desired mini-
mum gap” s∗ and the actual gap sα, where the desired
gap

s∗(v,∆v) = s0 + vT +
v∆v

2
√

ab
(2)

is dynamically varying with the velocity. The minimum
distance s0 in jams is significant for low velocities only.
The main contribution in stationary traffic is the term
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vT which corresponds to following the preceding vehicle
with a constant “safety” netto time gap T . The last term
is only active in non-stationary traffic and implements
an accident-free “intelligent” driving behaviour including
a braking strategy that, in nearly all situations, limits
braking decelerations to the “comfortable deceleration”
b.

As most other microscopic traffic models, the IDM de-
scribes an automated driving control system rather than
human drivers since it presumes (i) instantaneous reac-
tion, (ii) reaction only to the immediate predecessor, (iii)
infinitely exact estimating capabilities of the input quan-
tities s, v, and ∆v, and (iv) no long-term adaptation to
the global traffic situation. By virtue of the “intelligent”
braking term in (2), the IDM does contain some tem-
poral anticipation. In the following, we implement the
mentioned aspects of human driving.

A. Finite reaction time

We consider underlying microscopic models of the gen-
eral form

d

dt
vα = amic (sα, vα,∆vα) , (3)

where the own velocity and distance and velocity differ-
ence to the leading vehicle serve as stimuli determining
the acceleration [33]. A reaction time T ′ is implemented
simply by taking the right-hand side of Eq. (3) at time
t − T ′. It is essential to distinguish the reaction time
T ′ from the time-headway (parameter T in case of the
IDM), and from the update time step dt of the explicit
numerical integration. If T ′ is not a multiple of the up-
date time step, we used a linear interpolation according
to

x(t − T ′) = βxt−n−1 + (1 − β)xt−n, (4)

where x denotes any quantity sα, vα, or ∆vα of the right-
hand side of (3), xt−n denotes this quantity taken n =
floor (T ′/dt) time steps before the actual step, and the
weighting factor is given by β = T ′/dt − n. Notice that
all input stimuli, including the velocity, are taken at the
delayed time.

B. Imperfect estimation capabilities

We will model estimating errors for the netto distance
s and the velocity difference ∆v to the preceding vehicle.
Since the velocity itself can be obtained by looking at
the speedometer, we neglect its estimating error. From
empirical investigations (for an overview see [1], p. 190)
it is known that the uncertainty of the estimation of ∆v
is proportional to the distance, i.e., one can estimate the
inverse of the time-to collision (TTC) |∆v|/s with a con-
stant uncertainty [34]. For the distance itself, we base

the estimation error on a relative scale, i.e., assume a
constant variation coefficient Vs of the errors. Further-
more, we want to take into consideration that, obviously,
estimation errors have a certain correlation time which
can be modelled by a Wiener process [35]. This leads to
following nonlinear stochastic processes for the distance
and the velocity difference,

sest(t) = s(t) exp(Vsws(t)), (5)

and

(∆v)est(t) = ∆v + s(t) rcw∆v(t), (6)

where Vs is the variation coefficient of the distance es-
timate, and rc the inverse TTC as measure of the error
in ∆v. The stochastic variables ws(t) and w∆v(t) obey
independent Wiener processes w(t) of variance 1 with
correlation times τ = τs and τ∆v, respectively, defined
by [35]

dw

dt
=

−w

τ
+ ξ(t), (7)

with

〈ξ〉 = 0, 〈ξ(t)ξ(t′)〉 =
2

τ
δ(t − t′). (8)

In the explicit numerical update from time step t to step
t + 1, we implemented the Wiener processes by the ap-
proximations

wt+1 = e−dt/τwt +

√

2dt

τ
ηt (9)

where the {ηt} are independent realizations of a Gaussian
distributed quantity of zero mean and unit variance. We
checked numerically that update scheme (9) satisfies the
fluctuation-dissipation theorem 〈w2

t 〉 = 1 for any update
time step satisfying dt ¿ τ .

C. Temporal anticipation

Besides the braking term of the IDM implementing an
anticipative braking strategy we assume that drivers are
aware of their finite reaction time and anticipate the traf-
fic situation accordingly. Besides anticipating the future
distance [14] we will anticipate the future velocity using
a constant-acceleration heuristics. The combined effects
of a finite reaction time, estimation errors and tempo-
ral anticipation leads to following input variables for the
underlying micromodel (3),

dv

dt
= amic(s′α, v′

α,∆v′
α), (10)

with

s′α(t) =
[

sest
α − T ′∆vest

α

]

t−T ′
, (11)

v′
α(t) =

[

vest
α + T ′aα

]

t−T ′
, (12)

and

∆v′
α(t) = ∆vest

α (t − T ′). (13)
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D. Spatial anticipation several vehicles ahead

We assume that the acceleration of the underlying mi-
croscopic model can be split into a single-vehicle acceler-
ation valid on a nearly empty road which depends only
on the considered vehicle α, and a two-vehicle braking
deceleration taking into account the vehicle-vehicle in-
teraction with the preceding vehicle,

amic(sα, vα,∆vα) := afree
α + aint(sα, vα,∆vα). (14)

Notice that this split of the acceleration has already been
used to formulate a lane-changing model for a wide class
of micromodels [36]. Bitte Referenz “MOBIL” in die
Dtaenbank eintragen: Author: Martin Treiber
und Dirk Helbing Title: Realistische Mikrosim-
ulation von Straenverkehr mit einem einfachen
Modell Proceedingsband: 16. Symposium ”Sim-
ulationstechnik” ASIM 2002 Rostock, 10.09 -
13.09.2002 Tagungsband, Hrsg. Djamshid Tavan-
garian und Rolf Grützner S. 514–520

We model reaction to several vehicles ahead just by
summing up the corresponding vehicle-vehicle pair inter-
actions aint

αβ from vehicle β to vehicle α,

aint
αβ = aint





α
∑

j=β−1

sj , vα, vα − vβ



 , (15)

for the na nearest preceding vehicles β. Thus, the combi-
nation of all effects discussed up to now can be modelled
by

d

dt
vα(t) = afree

α +

α−1
∑

β=α−na

aint
αβ , (16)

where all distances, velocities and velocity differences on
the right-hand sides are given by (11) - (13).

Renormalisation for the IDM

For the IDM, there exists a closed-form solution of the
multi-anticipative equilibrium distance as a function of
the velocity,

se(v) = γs∗(v, 0)

[

1 −
(

v

v0

)δ
]− 1

2

, (17)

which is γ times the equilibrium distance of the original
IDM [26] where

γ =

√

√

√

√

na
∑

i=1

1

i2
. (18)

The equilibrium distance se(v) can be transformed to
that of the original IDM by renormalizing the relevant

Parameter Value

Desired velocity v0 = v0,max 128 km/h
Save time headway T = Tmin 1.1 s
Maximum acceleration a 1 m/s2

Desired deceleration b 1.5 m/s2

Acceleration exponent δ 4
Jam distance s0 2 m

TABLE I: Model parameters of the IDM as used in this paper.
The vehicle length is 5 m. The the string stability szenario,
v0 and T are adopted to the parameters used in [13].

IDM parameters appearing in s∗(v, 0),

sren
0 =

s0

γ
, T ren =

T

γ
(19)

Intuitively this means that a smaller part of the next-
neighbour (NN) interaction is redistributed to create the
non-NN interactions. The above renormalisation will be
applied to all simulations of this paper.

Notice that in the limiting case of anticipation to arbi-
trary many vehicles we obtain limna→∞ γ(na) = π/

√
6 =

1.283. Thius means that the combined effects of all non-
NN interactions would lead to an increase of the equilib-
rium distance by just about 28%.

E. Adaptation of the driving style to the traffic

environment

It is observed that most drivers, after being stuck for
some time in congested traffic, increase their preferred
temporal headway [16, 37]. Furthermore, when larger
gaps appear or when reaching the downstream front of
the congested zone, human drivers accelerate less and
possibly decrease their desired velocity with respect to a
free-traffic situation.

We model this memory effect [17] by assuming that,
when encountering congested traffic characterized by a
low “level-of service” λ = vα/v0 drivers gradually de-
crease their acceleration parameter a to a value a(λ) =
a[1+(1−λ)(βa−1)] and increase the time headway T (in
case of the IDM, T ren) to T (λ) = T [1 + (1− λ)(βT − 1)].
The adaptations take place on a time scale τ of the order
of a few minutes. Further details are given in [17].

III. SIMULATIONS AND RESULTS

Unless stated otherwise, we will use the values of the
IDM parameters given in Table I and that of the HDM
given in Table II. Notice that all human-driver extensions
are switched off (i.e., the IDM is recovered) for the HDM
values T ′ = 0, Vs = 0, rc = 0, na = 1, and βa = βT = 1.
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Parameter value

Reaction time T ′ 0 s - 1.5 s
Number of anticipated vehicles na 1 - 8
Relative distance error Vs 5%
Inverse TTC error rc 0.01/s
error correlation times τs, τ∆v 20 s
Traffic adaptation factor βa 0.5
Traffic adaptation factor βT 1.3
Traffic adaptation time τ 120 s

TABLE II: CHECK WERTE! Parameters of all human-driver
extensions with values used in this paper.

A. String Stability of a platoon

We investigated the stability limit of the HDM with
respect to reaction time T ′ and number na of anticipated
vehicles by simulating a platoon of 100 vehicles following
an externally controlled lead vehicle. As in a similiar
study on the OVM [13, 14], the lead vehicle drives at
vlead = 15.34m/s for the first 1000 s before it decelerates

with −0.7 m/s
2

to 14.0 m/s and drives at this velocity
until the simulation ends at 2500 s.

For the platoon vehicles, we set the IDM parameters
v0 = 32m/s and T = 1.5 s to obtain the same desired ve-
locity and initial equilibrium distance (se = 25.7m) as in
the studies [13, 14]. The other IDM parameters are that
of Table I. If na is larger than the number of preceding
vehicles (which can happen for the first vehicles of the
platoon) then na is reduced accordingly. Neither fluc-
tuations nor memory effects have been activated in this
scenario. As initial conditions, we assumed the platoon
to be at equilibrium.

We distinguish three stability regimes. (i) String sta-
bility, i.e., all perturbations introduced by the decelera-
tion of the lead vehicles are damped away, (ii) an oscil-
latory regime, where perturbations increase but do not
lead to crashes, (iii) instability with crashes. Oscillating
behaviour was detected if the maximum deceleration of
all vehicle in all timesteps exceeded 2 m/s

2
. Figure 1

shows the three phases depending on the reaction time
T ′ and on the platoon size for spatial anticipations of
na = 1 and 5 vehicles, respectively.

For na = 1 (corresponding to conventional car-
following models without spatial anticipation), a pla-
toon of 100 vehicles is stable for reaction times of up
to T ′

c1 = 0.8 s. Test runs with larger platoon sizes (up to
1000 vehicles did not result in different thresholds sug-
gesting that stability for a platoon size of 100 essentially
means stability for arbitrarily large platoon sizes.

Increasing the spatial anticipation to na = 5 vehicles
shifted the threshold of the delay time T ′ for string sta-
bility of a platoon of 100 vehicles to T ′

c1 = 1.3 s. Increas-
ing the delay time T ′ beyond the stability threshold lead
to strong oscillations of the platoon. Crashes, however,
occurred only when T ′ is above a second threshold T ′

c2.
Remarkably, for na = 5 or more vehicles, the observed
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FIG. 1: Stability of a platoon of identical vehicles as a func-
tion of the platoon size and the reaction time T ′ for the sit-
uation described in Section III A (a) for spatial anticipation
na = 1, and (b) for na = 5. In the “stable” phase, all per-
turbations are damped away. In the oscillatory regime, the
perturbations increase but do not lead to crashes.

threshold T ′
c2 = 1.8 s is larger than the equilibrium time

headway se/vlead = 1.68 s. More detailled investigations
revealed that the crashes are triggered either directly by
late reactions to the deceleration maneuver or indirectly
as a consequence of the string instabilites. Further in-
crease of na did not change the thresholds significantly.

In the simulations above, the update time step of the
numerical (Euler) integration scheme has been ∆t = 0.1
s, i.e., small compared to T ′. Since both finite reaction
times and update time steps act as a delay, we expect
similar dynamical effects for simulations with T ′ = 0 and
∆t of the order of the thresholds T ′

c1 or T ′
c2.

We systematically investigated the effects of various
combinations of T ′ and ∆T for a platoon size of 100 vehi-
cles. Figure 2 shows the result in form of a phase diagram
spanned by both times. For T ′ = 0 and na = 1(na = 5),
we observed stable platoon behaviour for ∆t ≤ 1.5 s
(∆t = 2.5 s), i.e., clearly larger than the correspond-
ing threshold values T ′

c1 of the reaction times, cf. Fig.
1. This is plausible, since the effective delay introduced
by finite update time steps varies between zero at times
t = (n + ε)∆t with n ∈ � and ε ¿ 1 (immediately after
an update time step), and ∆T at time t = (n + 1− ε)∆t
(immediately before the next update).
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FIG. 2: The three dynamical phases for a platoon size of 100
as a function of reaction time and numerical time discretiza-
tion (a) for a spatial anticipation of na = 1 and (b) for na = 5.

B. Open system with a bottleneck

In this section we examine the compensating influences
of driver reaction times T ′ and spatial anticipation na on
the stability of traffic and the occuring traffic states in a
more complex and realistic situation.

We have simulated a single-lane road section (total
length 20 km) with a bottleneck and open boundaries.
We assumed identical drivers and vehicles of length l = 5
m whose HDM parameters (with the exception of T ′ and
na) are given by Table II. The update time step of the
numerical integration was ∆t = 0.2 s. Each simulation
run covered a time interval of 3 h. We initialized the
simulations with very light traffic (traffic density 1 vehi-
cle/km) and set all initial velocities to 100 km/h. Notice
that the initial conditions are relevant only for the time
interval needed for the vehicles to cross the road section,
i.e., for about the first 15 min.

We simulated idealized rush-hour conditions by in-
creasing the inflow at the upstream boundary linearly
from 0 veh/h at t = 0 to 1800 veh/h at t = 1 h. For
the next 8 min we linearly increased the inflow to 2400
veh/h and afterwards decreased it for the next 8 min to a
flow of 1900 veh/h which is kept constant for the rest of
the simulation (cf. inset of Fig. 3). Since, at the bottle-
neck, the maximum inflow Qmax = 2400 veh/h exceeds
the static road capacity (maximum of the fundamental
diagram), a traffic breakdown is always provoked, even
for values of T ′ and na corresponding to stable traffic.
Both the initial vehicles and the vehicles of the inflow
have been initialized with a “memory” of free traffic, cf.

??.
We have implemented a flow-conserving bottleneck by

locally increasing the IDM parameter T from 1.1 s to 1.65
s according to

T = T (x) =











linear increase, 18.0 km 6 x 6 18.5 km
1.65 s, 18.5 km 6 x 6 19.5 km
linear decrease, 19.5 km 6 x 6 20.0 km
1.1 s, otherwise.

(20)
This corresponds to lowering the road capacity and is
representative for any bottleneck that is not an on- or an
off-ramp [38].

1. Phase diagram

We performed simulation runs with various combina-
tions of the number of anticipated vehicles, na = 1, . . . , 8
and reaction times, T ′ = 0, . . . , 1.6 s. Figure 3 shows the
resulting dynamic traffic regimes in the space spanned by
na and T ′.

The left lower corner corresponds to the special case
of the IDMM, i.e., zero reaction time and taking into ac-
count only the immediate front vehicle. In this case, the
simulation leads to oscillatory congested traffic (OCT),
cf. Figures 4(a), 5(a), and 6(a). In the OCT state, con-
gested traffic is linearly unstable and small perturbations
grow while travelling backwards [23].

Varying na and T ′ lead to following main results: (i)
Traffic stability increases drastically when increasing the
spatial anticipation from na = 1 to values ≤ 5 while the
stability remains essentially unchanged when increasing
na further to values > 5. In particular, for a sufficiently
large number of anticipated vehicles, the congestion be-
comes stable (HCT, homogeneous congested traffic) as
shown in Fig. 4(b). Thus, different traffic states can
be produced not only by varying the bottleneck strength
as in the phase diagram proposed first in [23] but also
by varying model parameters that influence the stability.
(ii) Increasing the reaction time T ′ destabilizes traffic
and finally leads to crashes. For a given na, the critical
threshold T ′

c2 for crashes is somewhat lower than in the
simulations of Sec. IIIA which is caused by the more
complex scenario and by the higher braking decelera-
tions caused by the traffic breakdown. (iii) The other
dynamic congested traffic states of the phase diagram of
Ref. [23] are found as well, specifically, triggered stop-
and-go waves (TSG), cf. Figures 4(c), 5(b), and 6(b),
and a combination of moving localized clusters (MLC)
and pinned localized clusters (PLC), cf. Fig. 4(d).

Remarkably, the destabilizing effects of finite reaction
times can be offset to a large extent by the spatial and
temporal anticipation heuristics of the HDM such that
the resulting stability dynamics is similar to the IDM(M)
case of zero anticipation and reaction time. This is illus-
trated by comparing Fig. 4(a) (no reaction time and no
anticipation) with Fig. 4(c) (finite reaction time and an-
ticipation). Notice, however, that in the simulation of
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FIG. 3: Phase diagram of congested traffic states in a space
spanned by the number of anticipated vehicles and the reac-
tion time. Homogeneous congested traffic (HCT) corresponds
to stability also in the congested regime. The other states
OCT (oscillatory congested traffic), TSG (triggered stop-and
go traffic), and MLC (moving localized traffic) are discussed
in the main text.

Fig. 4(c), congested traffic is unstable but convectively
stable. Thus, small perturbations induced by the fluctu-
ating terms of the model can only propagate upstream
and eventually transform to triggered stop-and go waves
while, near the downstream boundary, the congestion is
essentially homogeneous and similar to the “synchronized
traffic” state proposed by Kerner [39]. In contrast, the
congested state of the IDMM simulation 4(a) is convec-
tively unstable leading to oscillations also near the down-
stream boundary. Increasing T ′ from 1.2 s to 1.3 s in the
simulation of Fig. 4(c) leads to convectively unstable
traffic in this simulation as well and the macroscopic dy-
namics becomes even more similar to that of Fig. 4(a).

evtl. Bild na = 5, T ′ = 1.3 s?

2. Virtual detector data

Figure 5 shows flow-density data (“fundamental dia-
gram”) of a virtual detector at x = 14 km (5 km upstream
of the bottleneck) with a sampling period of 1 min. In
agreement with real traffic data [24], the data cover a
two-dimensional area in the congested region, both for
the IDMM [Fig. 5(a)] and for the HDM with finite reac-
tion times and anticipations [Fig. 5(b)].

Since the HDM has a unique equilibrium flow-density
curve and we simulated identical driver-vehicle combina-
tions, the obseved scattering implies that the simulated
congested traffic is out of equilibrium. In the simulations,
possible forces bringing traffic out of equilibrium are (i)
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FIG. 4: Spatiotemporal dynamics of typical traffic states cor-
responding to the phase diagram Fig. 3. (a) na = 1, T ′ = 0 s
(the special case of the IDMM) leading to OCT; (b) na = 5,
T ′ = 0.5 s (HCT); (c) na = 5, T ′ = 1.2 s (TSG); (d) na = 8,
T ′ = 1.2 s (MLC).

the fluctuating terms of the HDM, (ii) traffic instabilities.
The distance from the equilibrium curve (and thus the
area of the scattering) is increased by the long relaxation
times back to equilibrium implied by the adaptation of
the driver behaviour to the traffic environment (memory
effect). It turns out that traffic instabilities contribute
much more to the scattering of the flow-density data than
the fluctuating terms. Notice, however, that in general
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FIG. 5: Fundamental diagram as measured by a virtual de-
tector (sampling interval Taggr = 60 s) at x = 14.0 km. (a)
special case of the IDMM (na = 1, T ′ = 0 s) leading to OCT,
(b) finite anticipations and reaction times (na = 5, T ′ = 1.2s)
leading to TSG.

situations the heterogeneity of the driving styles and ve-
hicle types plays an important role as well [18, 32, 40, 41]
which is discussed in more detail in [17]. Figure 6 shows
velocity time series of the same virtual detectors. Com-
pared to the IDMM, the finite reaction times and antic-
ipations of the HDM lead to a larger period of the ve-
locity oscillations (about 10 min and 6 min for the HDM
and IDMM, respectively) and to softer upstream fronts
of congestions, i.e., to lower velocity gradients. Remark-
ably, the periods and gradients of the velocity time series
of the HDM agree nearly quantitatively with that of real
OCT data, cf, e.g., Fig. 12 in [26].

3. Dynamic capacity: Traffic outflow

We measured the averaged outflow Qout from con-
gested traffic at the downstream front located near the
bottleneck using a virtual detector immediately down-
stream of the front at x = 18750 m. To average over the
oscillations of OCT states. we used an increased sam-
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FIG. 6: Velocity time series from a virtual detector at x = 14
km for (a) na = 1, T ′ = 0 s, and (b) na = 5, T ′ = 1.2 s.

 1250

 1300

 1350

 1400

 1450

 1500

 1  2  3  4  5  6  7  8

Q
 (

1/
h)

na (veh)

T’=0.4 s

FIG. 7: Averaged outflow from the stationary downstream
front of the congested area located at the bottleneck.

pling interval of Taggr = 30 min. Notice that Qout can be
considered as a dynamical road capacity [42].

Figure 7 shows Qout as a function of the number of
anticipated vehicles for a constant value T ′ = 0.4 s of
the reaction time. Increasing the number of anticipated
vehicles from na = 1 to na = 5 leads to an increase of
the dynamical road capacity of about 15%. A further in-
crease of na yielded no significant changes. Remarkably,
up to T ′ = 1.2 s, the dynamic capacity Qout depends
only marginally on the reaction time. Increasing T ′ from
0.4 to 1.2 decreases Qout by about 1% for all values of na

where no crashes occur.

IV. DISCUSSION

Multi-anticipation to more than one front vehicle, an-
ticipation of the future traffic situation, finite reaction
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times, and errors in estimating distances and velocities
are key aspects of the human driving behaviour.

In this work we proposed a general scheme to include
these aspects into car-following models and applied it to
the IDM resulting in the human-driver model (HDM). It
is straightforward to use any other micromodel where the
acceleration depends only on positions, velocities and ac-
celerations of the own and the preceding vehicle such as
the optimal-velocity model [11], the Gipps model [28], or
the boundedly rational driver model [29, 30]. Since the
underlying models have both the advantages and limita-
tions of automatic cruise control (ACC) systems, one can
investigate the impact of a wider distribution of ACC ve-
hicles on the capacity and stability of the overall traffic
simply by simulating a mixture of, e.g., IDM and HDM
vehicles.

While finite reaction times has been investiagted as
early as 1961 [10], the HDM is, to our knowledge, the
first model allowing accident-free driving at realistic ac-
celerations in all traffic situations for reaction times of
the order of the time headway. The fact that this is a
simple task for human drivers suggests that both spa-
tial and temporal anticipations are important elements
in human driving strategies.

Remarkably, it turned out that the destabilizing ef-
fects of finite reaction times and estimation errors can
be offset to a large extent by the stabilizing effects of
spatial and temporal anticipations. This explains why
conventional car-following models such as the IDM can
describe many features of observed traffic dynamics al-
though they implement the driving style of machines, not
humans. A closer look on quantitative features of stop-
and-go traffic such as velocity gradients or the period of
the oscillations, as recorded by virtual detectors, shows
that the dynamics of the HDM agrees better with actual
traffic data than that produced by car-following models.
In the latter, the gradients typically are too large and
the periods between two “stop” waves too short. Thus
it seems that the large discrepancy between the “micro-
scopic” time scales for adapting distances and velocities
(of the order of 10 s) and the observed macroscopic time
scales (of the order of 10 min or more for the period be-
tween two “stop” waves) are caused, at least partly, by
multi-anticipations of the human drivers.

In addition to the congested states of the “phase di-
agram” of Helbing and Treiber [23], the HDM includes

complex traffic breakdown scenarios such as the coexis-
tence of free traffic, homogeneous congested traffic, and
triggered stop-and go waves [Fig. 4(c)]. Such states,
called “generalized patterns” in the nomenclature of
Kerner [24] have been observed on some German freeways
[24? ]. Bitte das Paper von Martin2 (empirische
Verkehrszustaende) in die Datenbank eintragen,
ggf. als Preprint Simulations with the HDM suggest
as general mechanism for such states an interplay be-
tween the fluctuations induced by the estimation errors
and the macroscopic dynamics of congested traffic. If
the congested traffic behind a bottleneck is convectively
stable but linearly unstable [23], the small fluctuations
grow while propagating opposite to the driving direction.
Because the fluctuations cannot propagate in the driv-
ing direction, the congested traffic near the bottleneck
is essentially homogeneous (“synchronized traffic”) while
further upstream the linear instability eventually triggers
stop-and-go waves.

From a control-theoretic point of view, the HDM im-
plements a continuous response to delayed and noisy in-
put stimuli. Alternatively, human driving behaviour has
been modelled by so-called action-point models where
the response changes discontinuously whenever certain
boundaries in the space spanned by the input stimuli are
crossed [5, 43–45]. It has been proposed that distractions
and the “restricted attention span” of human drivers play
an important role in the driving behaviour as well [46]. In
the HDM, a restricted attention can be modelled simply
by increasing the update interval of the numerical Euler
updates to values up to 1.5 s (cf. Fig. 2) and identifying
the update interval as the typical time interval where the
attention of the driver is not focussed on the traffic. Since
the reaction time can be varied independently from the
update interval, the combined effects of distractions and
finite reaction times can be investigated simultaneously.

Finally it should be mentioned that, in this work,
we considered only the longitudinal aspects (acceleration
and deceleration) of human drivers and implemented only
one vehicle-driver combination. Platooning effects due to
different driving styles and the remarkable ability of hu-
man drivers to safely and smoothly change lanes even
in congested conditions are the topic of a forthcoming
paper.
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