
ar
X

iv
:c

on
d-

m
at

/0
21

00
96

v1
  [

co
nd

-m
at

.d
is

-n
n]

  4
 O

ct
 2

00
2

Microsimulations of Freeway Traffic Including Control Measures

Martin Treiber and Dirk Helbing
Institute for Economics and Traffic, TU Dresden, Andreas-Schubert-Str. 23, D-01062 Dresden,

Germany.

http://www.helbing.org

Abstract

Using a recently developed microscopic traffic model, we simulate how speed

limits, on-ramp controls, and vehicle-based driver-assistance systems influence

freeway traffic. We present results for a section of the German Autobahn

A8-East. Both, a speed limit and an on-ramp control could considerably

reduce the severeness of the originally observed and simulated congestion.

Introducing 20% vehicles equipped with driver-assistance systems eliminated

the congestion almost completely.

I. INTRODUCTION

For many years, now, the volume of vehicular traffic increases continuously. Lack of space
and money, or ecological considerations often do not allow to respond to this rising demand
by expanding the infrastructure. Control strategies for vehicular traffic offer the possibility
to increase both, the capacity and the stability of traffic flow without building new streets.
The reason why such strategies are promising is the fact that (i) traffic breakdowns are
typically triggered by perturbations which can be reduced by suitable control measures, (ii)
traffic flow typically drops by about 5% to 30% [1,2] after a breakdown. This gives a first
estimate for the potential capacity gain.

Testing of new control strategies on real traffic is very expensive and not always feasible.
In contrast, traffic simulations allow to assess the performance of a given control strategy
in a short time. Therefore, simulations are especially useful in selecting the best strategy
during early stages of implementing new traffic controls.

There are several approaches to model vehicular traffic which can be used to simulate
traffic controls (see the overview in Ref. [3]).

Macroscopic models make use of the picture of traffic “flow” as a physical flow of some
fluid. They describe the dynamics of “macroscopic” quantities like the traffic density, traffic
flow, or the locally averaged velocity as a function of space and time. Therefore, they are
suitable to model control measures that influence directly these quantities, like on-ramp
controls [4].

In contrast, microscopic models describe the motion of each individual vehicle, i.e., they
model the driving reactions (accelerations, braking decelerations, and lane changes) of each
driver as a response to the surrounding traffic. They are especially suited to model control
measures that influence selectively individual driver-vehicle units, such as driver-assistance
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systems or speed limits (a speed limit of, e.g., 100 km/h should not affect trucks). However,
to the knowledge of the authors, no accepted model or systematic simulation study of these
effects has been published.

Microscopic models have probably the longest history of all traffic models. Nowadays,
there is an enormous variety, ranging from low-fidelity single-lane models for academic pur-
poses (see, e.g., the overview in Ref. [5]) to very detailled high-fidelity multi-lane models
with the goal of simulating traffic as realistically as possible (see, e.g., Ref. [6]).

From a physicist’s point of view, the simple models are useful to investigate generic
properties of traffic flow like stop-and-go waves in its purest form. The dynamics of individual
driver-vehicle units, however, is not modelled realistically.

High-fidelity models can model nearly every traffic situation including any conceivable
control measure. Unfortunately, their level of detail comes with many model parameters
(more than 50 are not uncommon), which increases the sensitivity to small parameter
changes and complicates calibration.

II. THE INTELLIGENT-DRIVER MODEL (IDM)

In this paper, we will use the recently developed “intelligent-driver model” (IDM) [7].
With respect to complexity, it lies in between the simplistic and high-fidelity models men-
tioned above. For simplicity, we will simulate a single-lane main road and use a very simple
lane-change model for on-ramps. Therefore, we do not consider situations where lane changes
on the main road are important like weaving sections. In fact, theoretical investigations
backed up with empirical data [7] have shown that for many types of road inhomogeneities
lane-changes on the main road do not play an important role.

The seven parameters of the IDM are intuitive and have plausible values, cf. Table
I. We have shown that this model describes realistically both, the driving behavior of
individual drivers and the collective dynamics of traffic flow like stop-and go waves, or the
aforementioned capacity drop [7,8].

The IDM acceleration v̇ of each vehicle is a continuous function of its own velocity v,
the spatial gap s to the leading vehicle, and the velocity difference (approaching rate) ∆v
to the front vehicle:

v̇ = a



1 −
(

v

v0

)δ

−
(

s∗(v, ∆v)

s

)2


 . (1)

This expression is an interpolation of the tendency to accelerate on a free road according to
the formula a[1− (v/v0)

δ] and the tendency to brake with deceleration −a(s∗/s)2, when the
vehicle comes too close to the vehicle in front. The deceleration term depends on the ratio
between the “desired minimum gap” s∗ and the actual gap s, where the desired gap

s∗(v, ∆v) = s0 + s1

√

v

v0

+ Tv +
v∆v

2
√

ab
(2)

is dynamically varying with the velocity v and the approaching rate ∆v.
In general, the IDM parameters have different values for each individual vehicle rep-

resenting different driving styles and motorizations (see below). Many aspects of traffic
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control, however, can be simulated assuming two driver-vehicle classes (two parameter sets
representing, e.g., cars and trucks). For simplicity, we will restrict ourselves to these cases,
here.

A. Model Properties

The IDM accceleration (1) is a continuous function of the variables s, v and ∆v describing
the traffic situation seen by the driver. The driving styles implemented by the IDM can be
seen when considering the following limiting cases:

• On a nearly empty freeway corresponding to s ≫ v0T , the acceleration is given by
v̇ = a[1− (v/v0)

δ]. The driver accelerates to his desired velocity v0 with the maximum
acceleration given by a. The acceleration coefficient δ influences the changes of the
acceleration when approaching v0. For δ = 1, we have an exponential approach with
a relaxation time of τ = v0/a. In the limit δ → ∞, the acceleration v̇ = a is constant
during the whole acceleration process and drops to zero when reaching v0.

• In dense equilibrium traffic corresponding to v̇ = 0 and v < v0/2, drivers follow each

other with a constant distance se(v) ≈ s∗(v, 0) = s0 + s1

√

(v/v0) + vT . For the case
s1 = 0 considered here, the distance is equal to a small contribution s0 denoting
the minimum bumper-to-bumper distance kept in standing traffic plus a velocity-
dependent contribution vT corresponding to a time headway T .

• When approaching standing obstacles from an initially large distance, i.e., for ∆v = −v
and s ≫ v2/(2b), IDM drivers brake in a way that the comfortable deceleration b will
not be exceeded in the approaching phase.

• Finally, when there is an emergency situation characterized by s < (∆v)2/(2b), the
drivers brake hard to get their vehicle under control, again. One could also incorpo-
rate a maximum physical deceleration (blocking wheels) of about 9 m/s2, but such
decelerations were not reached in our simulations.

In view of applications in traffic control, it is essential that the road capacity per lane
increases strongly with decreasing time headway T (since the theoretical upper limit of
traffic flow for vehicles of zero length is given by 1/T ), while traffic stability is enhanced
with increasing T (as there is more time to react to new situations). Furthermore, stability
increases with growing a (because drivers adapt faster to new situations) and decreasing b
(due to their more anticipative braking reactions). As one expects intuitively, the capacity
drop mentioned above is caused mainly by drivers who accelerate too slowly when leaving
congested traffic. In accordance with this picture, the simulated capacity drop increases
with decreasing acceleration a.
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FIGURES

FIG. 1. Traffic breakdown at a section of the A8-East used as test szenario. (a) Sketch of the

section. The square downstream of D 23 indicates a temporary closing of the right lane due to an

incident (see text). (b) Measured and (c) simulated locally averaged velocity.

III. TRAFFIC CONTROL

Traffic controls influence the driving behavior of some or all vehicles. Some examples are

• speed limits,

• on-ramp controls (“ramp metering”),

• dynamic-route guidance systems, and

• lane-changing restrictions.

In addition to such externally imposed measures, a vehicle-based automated acceleration
control is possible for vehicles equipped with driver-assistance systems.

Traffic control by ramp metering and route guidance is an old and large field ( for an
overview, see, e.g., [9,4]), while comparatively little has been published about modelling of
speed limits [9–13]. In most cases, the effects of the above control measures on the static

capacity have been investigated. We are not aware of a systematic simulation of the dynamic

effects caused by various control measures using a single micromodel. We will show that
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dynamic effects are not only relevant but sometimes produce even counter-intuitive results.
In particular, we will show that speed limits can increase the dynamic capacity although
the average static capacity is even reduced.

In the following, we will simulate effects of a speed limit, an on-ramp control, and a
driver-assistance system for a section of the German autobahn A8-East containing an uphill
section around x = 40 km. As further inhomogeneity, there is a small junction at about
x = 41.0 km. However, since the involved ramp flows were very small, we assumed that the
junction had no dynamical effect.

We considered the situation during the evening rush hour on November 2, 1998. At
about 17 h, traffic broke down at the uphill section. At about 18 h, an additional congestion
caused by an incident further downstream propagated into the simulated section [7]. In
the simulation shown in Fig. 1(c), we used measured lane-averaged one-minute data of
velocity and flow as upstream and downstream boundary conditions. Both types of traffic
breakdowns were realistically reproduced. For the purpose of simulating traffic controls,
however, we will exclude the incident-caused jam, here, replacing the data-based downstream
boundary conditions by “free” boundary conditions [14]. The reason is that congested traffic
caused by accidents can be hardly eliminated by control measures. (The probability for an
incident to occur can certainly be influenced, but this will not be discussed here).

FIG. 2. Simulation of the A8-East (a) without speed limit, (b) with a speed limit of 80 km/h.

(c) Travel times corresponding to the scenarios (a) and (b).
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A. Speed limits

We have assumed two vehicle classes: 50% of the drivers had a desired velocity of v0 = 120
km/h, while the other half had v0 = 160 km/h outside of the uphill region. A speed
limit reduces the desired velocities to 80 km/h. Within the uphill region, both driver-
vehicle classes are forced to drive at a maximum of 60 km/h (for example, due to overtaking
trucks that are not considered explicitely here; their realistic inclusion requires multi-lane
simulations.)

Figure 2 shows spatio-temporal plots of the locally averaged traffic density for scenarios
with and without the speed limit. (For the specific averaging formula, see Ref. [7].) The
simulations show the following:

• During the rush hour (17 h ≤ t ≤ 19 h), the overall effect of the speed limit is positive.
The increased travel times in regions without congestion are overcompensated by the
saved time due to the avoided breakdown.

• For lighter traffic (t < 17 h or t > 19:30 h), however, the effect of the speed limit
clearly is negative. This problem can be circumvented by traffic-dependent, variable
speed limits.

FIG. 3. Simulation of an on-ramp with the micro-macro link (from [15]). The on-ramp region

(dark) is computed with a macroscopic version of the IDM.

B. On-Ramp Control

Traffic inflow on on-ramps can be controlled, e.g., by traffic lights (“ramp metering”).
Many on-ramp flow-control strategies have been proposed in the last 30 years and applied
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mostly to macroscopic simulations [4]. Clearly, lane-changing processes play an important
role in simulating on-ramp flow-control [9]. The role of the longitudinal dynamics (acceler-
ation and braking), however, remained less clear.

Here, we will show that on-ramp control can be beneficial even when considering essen-
tially longitudinal effects. To this purpose, we neglect lane changes on the main road and
apply following minimal lane-changing scheme to implement an on-ramp of length Lrmp from
which a traffic flow Qrmp merges to a single main lane:

• Try to add ramp vehicles to the main flow at the times when the temporal ramp-flow
integral reaches integer values.

• Search the largest gap on the main lane in the section of length Lrmp adjacent to the
acceleration lane.

• If the resulting gaps to the respective front and rear vehicles exceed a certain minimal
value, place the new vehicle in the middle with an initial velocity given by the average
of the front and rear vehicles.

• Otherwise, add the vehicle to the queue of waiting vehicles. (This case did not occur
in the simulations. All queues were caused by the flow control to be described below).

Another possibility (apart from a multi-lane model) is opened by the recently formulated
micro-macro link [15] allowing to simulate the ramp section macroscopically with a source
term in the continuity equation [16], while the remaining stretch is simulated microscopically,
see Fig. 3.

We restrict the sum of the traffic flow Qmain upstream of the on-ramp and the flow Qrmp

arriving at the on-ramp by following simple control scheme:

Qmax
rmp = max(0, Qc − Qmain), (3)

where Qmain is the traffic flow on the main road upstream of the on-ramp. If, at some time
tc, the flow Qrmp arriving at the on-ramp exceeds this limit, a queue of

nwait(t) =
∫

t

tc

dt (Qrmp − Qmax
rmp) (4)

waiting vehicles will form. The actual inflow Qc

rmp of the controlled on-ramp is given by

Qc

rmp =

{

Qmax
rmp if nwait(t) ≥ 1,

min(Qrmp, Q
max
rmp) otherwise.

(5)

Notice that the on-ramp can be completely closed according to this scheme. More elaborate
and realistic control schemes have been proposed in the literature [4]. The simulation results,
however, are robust with respect to the choice of a certain control scheme, so we chose the
conceivably most simple one.

We simulated single-lane single-class traffic and modelled the uphill gradient by reducing
the desired velocity from 120 km/h to 60 km/h.
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FIG. 4. (a) Travel times on the main road (solid lines) and waiting times on the ramp (dashed)

for Qrmp = 300 vehicles/h. (b) Number of vehicles on the considered section of the main road and

number of waiting on-ramp vehicles. All results are plotted for optimized flow control (thick lines),

and without flow control (thin lines).
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FIG. 5. Travel and waiting times as in Fig. 4, but for non-optimal values of the cut-off flow Qc.

Figure 4 shows the travel time through the simulated section on the main road, and
the waiting time at the on-ramp for an assumed ramp flow Qrmp of 300 vehicles per hour
and main lane for the optimal choice of Qc. Notice that in the optimized control scenario,
the waiting times of the on-ramp vehicles are overcompensated by the decreased travel time
for the main road stretch (with the exception of a short time interval after 17 h). Since
also vehicles coming from the on-ramp drive on the main section afterwards, even they will
generally profit from the flow control in this example.

Figure 5 shows the travel and waiting times for non-optimal values of Qc. If Qc is 5%
below the optimal value, the maximum waiting time is increased and becomes comparable
to the saved travel time (Fig. 5 left). If one increases Qc above the optimal value, the control
becomes less and less effective (Fig. 5 right).

A suitable measure for assessing the quality of a traffic control is given by the sum of
the waiting and travel times of all vehicles during the whole rush hour [4],
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Tt =
∫

t2

t1

dt [nwait(t) + nmain(t)], (6)

where nmain is the number of all vehicles in the considered section x1 ≤ x ≤ x2. The
spatio-temporal region [t1, t2] × [x1, x2] must be selected such that there is free traffic at
all boundaries. Notice that the vehicle numbers and not the travel and waiting times enter
into the quality measure Tt. Furthermore, if Qmain(t) ≤ Qc is satisfied for t1 ≤ x ≤ t2, Tt

does not depend on the on-ramp flow while the waiting times do. The right part of Fig. 4
illustrates the changes of the quality measure Tt induced by the control, see the difference
between the areas enclosed by the two solid curves (saved total travel time for the main
traffic) and by the dashed curve and the x-axis (total waiting time of the on-ramp traffic if
the control is active).
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FIG. 6. Spatio-temporal dynamics of the traffic density for different percentages of equipped

vehicles. The acceleration of the equipped vehicles has been increased from a = 1 m/s2 to a = 2

m/s2. The time headway has been decreased from T = 1.6 s to T = 0.8 s.
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FIG. 7. (a) Travel time of individual vehicles. (b) Total travel time of all vehicles for different

percentages of equipped vehicles.

C. Vehicle-Based Methods

The research presented in this section was performed in tight collaboration with the
Volkswagen AG.

Presently, vehicle-based driver-assistance systems with adaptive acceleration control be-
come available. In such systems, a detector determines the distance and velocity difference
to the front vehicle and automatically accelerates or decelerates the vehicle according to the
traffic situation. Obviously, micromodels like the IDM can be used to implement the control
algorithm of such a system.

It may be argued that human and automated driving behaviours are fundamentally dif-
ferent. In fact, the assumptions of micromodels like the IDM: reaction only to the immediatel
predecessor in combination with a negligible reaction time, fit perfectly to automated con-
trols but less to human drivers. Human drivers have a non-negligible reaction time (of the
order of 1 s) leading to more instability. This is offset by the more elaborate human driving
strategy including direct reaction to decelerations (i.e., to braking lights) and anticipation
of the traffic situations several vehicles in front of them. Nevertheless, the IDM can be
calibrated to actual traffic data (cf. Fig. 1) suggesting that these two effects not contained
in the IDM essentially cancel each other. This justifies the use of the same model for both

human and automated longitudinal control.
Here, we show that, in principle, such control systems can improve the capacity and

quality of traffic flow.
In the simulations, we model both equipped and not equipped vehicles with the IDM,

using different values for a and T . From the discussion of the IDM in Section IIA one might
expect that increasing a for the equipped vehicles (within the range allowed by the motor-
ization) increases stability of the overall traffic, while decreasing T increases its capacity.

Figures 6 and 7 show that this is true even for only 10% equipped vehicles. The total
additional time spent in the traffic jam was decreased by more than 80% with respect to
the original situation. For a percentage of 20% equipped vehicles, the traffic breakdown
disappeared almost completely.

IV. OUTLOOK AND DISCUSSION

In this paper, we have simulated the effects of speed limits, on-ramp controls, and driver-
assistance systems using the microscopic intelligent-driver model (IDM). The IDM is suitable
for simulating traffic controls because it is relatively simple, contains only a few and intuitive
model parameters, and reproduces all relevant properties of real traffic. Moreover, it is
numerically efficient and robust.

In all simulations, the model parameters have been calibrated to the historic traffic data
of the respective reference scenarios. The presented effects of traffic control, however, are
of a qualitative nature. They need to be calibrated before appying them in real control
systems.
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While our simulations of an on-ramp control support the findings obtained with macro-
scopic models [4,9], we show that speed limits and driver-assistance systems have a similar
beneficial potential. We emphasize that all three control measures have been simulated with
the same model. Thus, it is possible to exploit the synergy effects that might result from a
combination of these measures.

Both uphill gradients and speed limits reduce the velocity, so, at first sight, it is puzzling
why speed limits can improve the quality of traffic flow while obviously uphill regions dete-
riorate it. To understand this, note that the desired velocity v0 corresponds to the lowest
value of

• the maximum velocity allowed by the motorization,

• the imposed speed limits, and (possibly with a “disobedience factor”),

• the velocity actually “desired” by the driver.

Therefore, speed limits act selectively on the faster vehicles, while uphill gradients reduce
predominantly the desired velocity of the slower vehicles. As a consequence, speed limits
reduce velocity differences, thereby stabilizing traffic, while uphill gradients increase them.
Since global speed limits always raise the travel time in off-peak hours when free traffic is
unconditionally stable, traffic-dependent speed limits are an optimal solution.

In contrast to speed limits, on-ramp controls are not common in Europe. We showed
that, nevertheless, they can help to avoid or delay traffic breakdowns. Moreover, they can
be advantageous even to the drivers who have to wait at the on-ramps because their total
travel times are decreased as well.

The effects of on-ramp controls are qualitatively comparable to those of traffic-dependent,
dynamic route guidance systems. While the former truncate flow peaks on a short time scale
of the order of minutes, dynamic-route guidance systems truncate flow peaks on a time scale
of hours.

In summary, our simulations support the conclusion that control measures which ho-
mogenize traffic flow are generally suitable for the reduction of congestion and travel times.
While speed limits decrease speed differences, on-ramp controls smooth out flow peaks.

On the long run, however, vehicle-based systems have certainly the highest potential for
increasing the traffic capacity of a given infrastructure. Driver-assistance systems can im-
prove and speed up the reaction to the behavior of the respective vehicle in front. This allows
stable traffic at significantly reduced time headways. In our test scenario, 20% equipped
vehicles nearly eliminated all breakdowns. However, some legislatory and sensor-related
problems remain to be solved.

Presently, we are extending our simulations to multi-lane traffic for the simulation of
further control measures like lane-changing restrictions or overtaking bans for all or certain
classes of vehicles (e.g., trucks). Moreover, we are exploring the potentials of communi-
cating vehicles with respect to their optimal self-organization based on the paradigms of
decentralized control and collective intelligence [17].

Acknowledgments: The authors are grateful for financial support by the DFG (grant
no. He 2789/2-1). The research of Section IIIC was initiated and funded by the strategic
research of the Volkswagen AG, Wolfsburg, and the results were produced in tight collabo-
ration.
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TABLES

Parameter Typical value

Desired velocity v0 120 km/h

Safe time headway T 1.5 s

Maximum acceleration a 1 m/s2

Comfortable deceleration b 2 m/s2

Minimum distance s0 2 m

Jam distance s1 0 m
Acceleration exponent δ 4

TABLE I. Parameters of the IDM used as reference values.
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