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By means of microscopic simulations we show that non-instantaneous adaptation of the driving
behaviour to the traffic situation together with the conventional measurement method of flow-
density data can explain the observed inverse-λ shape and the wide scattering of flow-density data
in “synchronized” congested traffic. We model a memory effect in the response of drivers to the
traffic situation for a wide class of car-following models by introducing a new dynamical variable
describing the adaptation of drivers to the surrounding traffic situation during the past few minutes
(“subjective level of service”) and couple this internal state to parameters of the underlying model
that are related to the driving style. For illustration, we use the intelligent-driver model (IDM)
as underlying model, characterize the level of service solely by the velocity and couple the internal
variable to the IDM parameter “netto time gap”, modelling an increase of the time gap in congested
traffic (“frustration effect”), that is supported by single-vehicle data. We simulate open systems
with a bottleneck and obtain flow-density data by implementing “virtual detectors”. Both the
shape, relative size and apparent “stochasticity” of the region of the scattered data points agree
nearly quantitatively with empirical data. Wide scattering is even observed for identical vehicles,
although the proposed model is a time-continuous, deterministic, single-lane car-following model
with a unique fundamental diagram.

I. INTRODUCTION

The nature of “synchronized” traffic flow is one of the
most controversial subjects in traffic theory [1,2]. It is
a form of congested traffic with nonzero flows typically
found upstream of inhomogeneities (e.g. freeway bot-
tlenecks), characterized by an erratic motion of time-
dependent flow-density data in a two-dimensional area
(and a synchronization of the time-dependent average ve-
hicle velocities among neighboring lanes) [3–5].

The wide scattering of the data points for congested
traffic seems to exclude explanations in terms of traffic
models assuming a fundamental (steady-state) relation
Qe(ρ) between the flow Q and the density ρ. In re-
sponse, models with non-unique flow-density relations (or
velocity-distance relations) have been proposed both on a
macroscopic level [6], as car-following models [7–10], and
as cellular automata [11]. The empirical data scattering
has also triggered a flood of publications in physics jour-
nals with various other suggestions ranging from shock
waves propagating forward or backward [3], effects of lane
changing, changes in the behavior of “frustrated” drivers
[12–14], anticipation effects [15,16], or a trapping of vehi-
cles [17]. Another obvious explanation of the scattering
lies in the heterogeneity of vehicles (such as cars and
trucks) and driving styles (such as defensive or aggres-
sive) on any real road [18]. In fact, statistical analyses
of single-vehicle data show a particularly wide scattering
of the time gaps between successive vehicles in congested
traffic [19–21]. Furthermore, the average netto time gaps
increase in congested traffic suggesting that “frustration
effects” are real [21]. Macroscopic simulations taking into
account observed variations in the truck percentage [22]

or direct microsimulations with two types of vehicles [23]
could explain a great deal of the observed scattering, but
the 2D-regions remained somewhat smaller than in the
observed data.

Another factor possibly contributing to the wide scat-
tering are traffic instabilities resulting in so-called “oscil-
lating congested traffic” which is the most common form
of congested traffic [24]. If the sampling time interval
for data aggregation is not commensurable with the fre-
quency of the oscillations or if the oscillations are nonpe-
riodic, then the data points will display artificial “erratic
scattering”. In this case, the origin of the scattering is
the method of data aggregation in combination with the
conventional interpretation of flow-density data [18].

In this paper we show by means of simulations that the
adaptation of drivers to the surrounding traffic on time
scales of a few minutes (“memory effect”) in conjunction
with traffic instabilities can quantitatively explain the ob-
served scattering. Our model is based on the observation
that, after being stuck for some time in congested traffic,
most drivers adapt their driving style, e.g., by increasing
their preferred netto (bumper-to-bumper) time gap T to
the preceding vehicle [19–21,2]. Apart from congestion,
other aspects of the traffic environment such as driving
in the dark or in tunnels affect the driving behaviour as
well [25], but will not considered in this paper.

Models based on memory effects have been successfully
applied in several fields of statistical and interdisciplinary
physics such as liquid crystals and polymers [26] or in
reaction-diffusion systems [27]. Nonlinear Markow equa-
tions with memory Kernel have been applied to multi-
agent systems and financial markets and provide a sta-
tistical mechanism for the observed clustered volatility
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[28].
In the next section, we formulate the adaptation of

the driving style to the surrounding traffic and incorpo-
rate the memory effects into the intelligent-driver model
(IDM) [24] resulting in the IDMM (“intelligent-driver
model with memory”). Like the IDM, the IDMM is a
deterministic time-continuous car-following model with
a unique steady-state flow-density relation.

In Section III, we presents related simulations and
compare the measurements of “virtual detectors” with
empirically measured traffic data. We will find a semi-
quantitative agreement. While the scattering is even ob-
served in the original IDM, the memory effect is necessary
to obtain the inverse-λ shape and the correct relative size
of the twodimensional region of data scattering.

In the concluding Section IV we discuss the remarkable
fact that erratic scattering can be obtained from deter-
ministic single-lane models with a unique fundamental
diagram in simulations without any element of stochas-
ticity or heterogeneity.
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FIG. 1. Distribution of netto time headways on the left
lane of the Dutch A9 from Haarlem to Amsterdam for free
traffic (v > vc = 60 km/h) and congested traffic (v < vc).

II. MODEL EQUATIONS

We will formulate the memory effect in human driver
behavior in a way that directly connects to existing car-
following models. Any model can be used, the parame-
ters of which can be interpreted in terms of the driving
behaviour. The model should allow to define some de-
sired velocity v0 and to influence the minimum netto time
gap T by varying one or more of its model parameters.
The outcome, of course, will depend on the details of the
model used. In this paper, we apply the intelligent-driver
model (IDM) [24] as underlying model, where v0 and T
are model parameters themselves.

A. The intelligent-driver model

In the IDM, the acceleration of each vehicle α is as-
sumed to be a continuous function of the velocity vα, the
netto distance gap sα, and the velocity difference (ap-
proaching rate) ∆vα to the leading vehicle:

v̇α = a

[

1 −
(

vα

v0

)4

−
(

s∗(vα, ∆vα)

sα

)2
]

. (1)

This expression is an interpolation of the tendency
to accelerate with af (v) := a[1 − (v/v0)

4] on a free
road and the tendency to brake with deceleration
−bint(s, v, ∆v) := −a(s∗/s)2, when vehicle α comes too
close to the vehicle in front. The deceleration term de-
pends on the ratio between the effective “desired mini-
mum gap” s∗ and the actual gap sα, where the desired
gap

s∗(v, ∆v) = s0 + vT +
v∆v

2
√

ab
(2)

is dynamically varying with the velocity. The first term
s0 on the right-hand side denotes the small minimum
distance kept in standing traffic. The second term corre-
sponds to following the preceding vehicle with a constant
“safety” netto time gap T . The third term is only active
in non-stationary traffic and implements an accident-free
“intelligent” driving behaviour including a braking strat-
egy that, in nearly all situations, limits braking deceler-
ations to the “comfortable deceleration” b.

B. Adaptation of the driving style and memory

effect

We assume that all adaptations of the driving style are
controlled by a single internal dynamical variable λα(t)
(“subjective level of service”), which can take on values
between 0 (in standing traffic) and 1 (on a free road),
and that it relaxes to the instantaneous level of service
λ0(v) with a relaxation time τ according to

dλα

dt
=

λα − λ0(vα)

τ
. (3)

This means, for each driver the subjective level of service
is given by the exponential moving average (EMA) of the
instantaneous level of service experienced in the past:

λα(t) = 〈λ0α〉EMA =

∫ t

0

λ0(vα(t′))e−(t−t′)/τ dt′. (4)

We have assumed the instantaneous level of service
λ0(v) to be a function of the actual velocity v(t). Obvi-
ously, λ0(v) is a monotonuously increasing function with
λ0(0) = 0 and λ0(v0) = 1. In this paper, we specify the
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most simple “level-of-service function” satisfying these
conditions:

λ0(v) =
v

v0
. (5)

Notice that this equation reflects the level of service or
efficiency of movement from the driver’s point of view,
with λ0 = 1 meaning zero hindrance and λ0 = 0 meaning
maximum hindrance. If one models heterogeneous traffic
where different drivers have different desired velocities
there is no “objective” level of service, only an average
one.

Having defined how the traffic environment influences
the degree of adaptation λα of each driver, we now spec-
ify how this internal variable influences the driving be-
haviour. A behavioural variable that is both measurable
and strongly influencing the traffic dynamics is the netto
time gap T . Figure 1 shows that, in congested traffic,
the whole distribution of time gaps is shifted to the right
compared to data of free traffic [21]. We model this by
varying the corresponding IDM parameter in the range
between T0 (free traffic) and Tjam = βT T0 (traffic jam)
according to

T (λ) = T0[βT + λ(1 − βT )] . (6)

Herein, the adaptation factor βT is a model parameter
(cf. Table I). Notice that probably other parameters of
the driving style are influenced as well, such as the ac-
celeration, the comfortable deceleration, or the desired
velocity. This could be implemented by analogous equa-
tions for a, b, and v0, respectively. For simplicity (and
in order to have an empirically testable model), we will
only consider the influence on T .

Parameter Typical value

Desired velocity v0 120 km/h
Netto time gap T0 0.85 s
Maximum acceleration a 0.8 m/s2

Comfortable deceleration b 1.8 m/s2

Minimum distance s0 1.6 m
Vehicle length l = 1/ρmax 6 m

Adaptation factor βT = Tjam/T0 1.8
Adaptation time τ 600 s

TABLE I. Model parameters of the IDMM with the values
used throughout this paper. All eight model parameters have
a clear vehicle- or driver-related meaning and can be deter-
mined from empirical traffic data. Note that other models
recently proposed to describe similar empirical observations
consist of up to 10 equations with about 20 parameters [9].

In summary, the IDMM is described by the IDM equa-
tions (1) and (2), by Eq. (6) describing how the subjec-
tive level of service λ influences the time gap, and by the
dynamical equation for the internal state itself, which can
be written as

dλα

dt
=

λα − vα/v0

τ
. (7)

All IDMM parameters are intuitive and can be deter-
mined from traffic data. In the special case βT = 1,
the IDMM reverts to the original IDM. The special case
τ = 0 corresponds to a slightly modified IDM, where
the parameter T in Eq. (2) is replaced by T (v) =
T0[βT + v

v0

(1 − βT )]. Table I gives the values that we
will used throughout the rest of this paper unless stated
otherwise.

Notice that the IDMM belongs to the class of mod-
els with a unique stationarity relation. Its steady-state
following distance as a function of the velocity is given
by

se(v) =
s0 + vT0

(

βT + (1 − βT ) v
v0

)

√

1 −
(

v
v0

)4
. (8)

Figure 2 shows the resulting fundamental diagram for
identical vehicle types for the IDMM in comparison with
that of the IDM.
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FIG. 2. Comparison of the theoretical fundamental dia-
grams of the IDM and IDMM.

III. SIMULATIONS

We have simulated a 20 km long road section with a
bottleneck and open boundaries, assuming identical ve-
hicles of length l = 6 m whose drivers behave accord-
ing to the IDMM with the parameters given in Table I.
The simulations have been started with very light traffic
correspondig to a homogeneous density of 2 vehicles/km
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and an initial velocity of 100 km/h. During the simu-
lated time interval of 3 hours, we have simulated ideal-
ized rush-hour conditions by increasing the inflow at the
upstream boundary linearly from 200 veh./h at t = 0
to 2400 veh./h at t = 25 min. Afterwards, the flow has
been decreased linearly to 100 veh./h at t = 180 min.
All vehicles have been initialized with λ = 1, i.e., with a
“memory” of free traffic. As in macroscopic traffic simu-
lations of open systems [29], the velocity of the inflowing
traffic turned out to be irrelevant, since it quickly ap-
proached the value corresponding to the “free” branch of
the velocity-flow relation ve(Q) with a flow Q(t) equal to
that imposed at the boundary.

We have implemented a flow-conserving bottleneck by
locally increasing the IDM parameter T0,

T0 = T0(x) =

{

1.20 s 17 km ≤ x < 18 km,
0.85 s otherwise.

(9)

This corresponds to lowering the road capacity and can
represent any bottleneck which is not an on- or off-ramp
[30]. Notice that, at the bottleneck, this means that the
actual time headway T , as specified by Eq. (6) with
(9), depends both directly on x and on the subjective
level of service of the driver resulting in another indirect
dependence on x.

The simulation has been performed using an explicit
integration scheme. Output is produced by implementing
“virtual detectors” at x = 9 km and x = 12 km, with data
aggregation periods of Taggr = 60 s. In each aggregation
interval i, the traffic flow

Qi = ni/Taggr (10)

is determined by counting the number ni of crossing ve-
hicles, the average velocity Vi is calculated by the arith-
metic average

Vi =
1

ni

ni
∑

α=1

vα, (11)

and the density by

ρi = Qi/Vi, (12)

as in many practical cases.
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FIG. 3. (a) Simulated flow-density data of two virtual de-
tectors compared with (b) flow-density data from the Ger-
man freeway A9-South near Frankfurt on July 31, 2001. (c)
Location of the detectors for the empirical data. Here, the
intersection “Nordwestkreuz” serves as bottleneck.

Figure 3 displays the resulting flow-density data of the
two virtual detectors, compared with empirical data from
real traffic. Both diagrams shows (i) the characteristic
wide and erratic scattering of the data points which is a
signature of “synchronized traffic”, (ii) the characteristic
inverse-λ shape with a maximum Qmax of traffic flow in
free traffic (immediately prior to the breakdown), which
is distinctively higher than the typical flows in the con-
gested traffic QCT after breakdown.
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A. Interpretation of macroscopic traffic data

The question arises what causes the obvious stochas-
ticity in the data of the virtual detectors although every-
thing in the simulation is deterministic (including the
upstream boundary condition and the implementation
of the bottleneck), although all drivers and vehicles are
treated identically, and not even lane changes may serve
as possible source for fluctuations. The only possible
source of the fluctuations are traffic instabilities which
we will analyse in the following.
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FIG. 4. (a) Spatio-temporal dynamics of the traffic density
and (b) time series of the velocity at the two virtual detectors
of the simulation shown in Fig. 3.

Figure 4(a) shows that at about t = 40 min, a traf-
fic breakdown occurs near the bottleneck at x = 12 km,
triggering one isolated wide jam with zero flow and a re-
gion of congested traffic with nonzero flow upstream of
the bottleneck. In the congested region, initially small
oscillations behind the bottleneck (oscillating congested
traffic, OCT) increase their amplitude while travelling
further upstream, and finally some isolated stop-and-go
waves (called “wide moving jams” in [31]) are emitted
from the congested region travelling further upstream
(triggered stop-and-go traffic [32]). The time series of
the virtual detectors (see Fig. 4(b)) show that the wide
jam also crosses the detectors. Since the jam and the os-
cillations of the OCT state are the only possible sources
of fluctuations, the scattering in the data of the virtual

detectors obviously can be traced back to longitudinal
instabilities in connection with the interpretation of the
macroscopic data.

Based on theoretical investigations [3], one might ex-
pect a “jam line” in the flow-density diagram of Fig. 3
stemming from the wide jam crossing the virtual detec-
tors. However, the jam line is missing. Moreover, the
highest “measured” density is only about 50 veh./km,
although the model parameters (Table I) imply a jam
density of at least ρjam = 1/(l + s0) = 130 veh./km.
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FIG. 5. Flow-density plot as in Fig. 3, but using no data
aggregation and the real density (13).

To check, whether this is an artefact of the data in-
terpretation, in Fig. 5 we have plotted the flow-density
diagram of the same simulation at the same locations,
but this time using the true spatial density

ρ(x, t) =
1

xα−1(t) − xα(t)
, xα ≤ x < xα−1, (13)

which one would obtain by “snapshots” at fixed times
rather than the macroscopic density (12). In the data for
x = 9 km, one clearly sees the signatures of the fully de-
veloped jam in form of a straight “jam line” J , connecting
the points (ρjam, Qjam) = (130/km, 0) and (ρout, Qout) =
(18 veh./km, 1750 veh./h). Notice that, in accordance
with observations [31], the outflow from isolated jams is
distinctively lower than Qmax. Moreover, the data at
both locations show more than one instance of zero or
nearly zero flow at densities near the maximum density,
which can be seen neither in the flow-density data nor
in the time series of the velocity of the virtual detec-
tors, cf. Fig. 4. The reason is that the virtual detectors
display finite velocities and flows whenever at least one
car crosses the detector during the sampling time inter-
val. Thus, periods of standing traffic of up to the double
sampling time, i.e., up to 2 minutes, may not be observed
in the detector output.

If we assume that the simulation captures some es-
sential aspects of real traffic we conclude that (i) a jam
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line probably exists in real traffic but cannot be found in
flow-density data of stationary detectors, (ii) when look-
ing only at aggregated traffic data, one might get a wrong
picture of the actual traffic dynamics.

B. Analysis of the adaptation effect

We now proceed to investigate the effects of the new
IDMM parameters. We have simulated the same system
of equations with various values of the adaptation factor
βT and the adaptation time τ . It turned out that both
the values of Qout and QCT decrease with βT , while Qmax

essentially remains unchanged. This is plausible, since
(βT −1) describes the strength of the “frustration effect”
after driving in congested traffic for some time, while the
value of Qmax is related to free traffic where frustration
effects play a minor role. Furthermore, QCT decreases
with τ . Since the time spent in congestion behind bot-
tlenecks is typically of the order of the adaptation time or
longer, drivers are adapted to congested traffic when they
get closer to the downstream front of the congestion area
near the bottleneck. Consequently, it takes some time
to revert to the more “aggressive” driving style in free
traffic, explaining the decrease of Qout with τ .
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FIG. 6. Time series of traffic flow for the simulation of Fig.
4, measured by a virtual detector at x = 11000 m near the
bottleneck. Notice that the flow Qout ≈ 1750 veh./h in the
interval 40 min ≤ t ≤ 50 min is related to the outflow from
the isolated jam and not the bottleneck.

One might argue that the drivers should adapt instan-
taneously to the traffic situation. There is empirical evi-
dence, however, that the characteristic time scale of the
adaptation is not negligible [2]: In data of congested traf-
fic measured near the bottleneck causing the breakdown,
one often observes that, after the initial drop of the traf-
fic flow, the flow decreases further during the first 10 or
20 minutes after the breakdown, cf. e.g., Fig. 12 in [24].
However, according to traffic theory, the outflow from
jams and thus the measured flow near the bottleneck are
constant for fixed driving styles. Assuming that, after
the breakdown, the length of the congested area behind
the bottleneck and thus the waiting time of each driver
increases, gradual adaptations naturally explain the ob-

servations. Figure 6 shows this effect in the simulated
measurement of a virtual detector near the downstream
congestion front. The average flow is highest in the be-
ginning (at t = 60 min) and at the end (at t = 160 min)
of the congestion. However, it eventually decreases from
QCT ≈ 1500 veh./h to QCT ≈ 1300veh./h at t = 120 min,
where the length of the congestion reaches its maximum
value of about 10 km.

C. Comparison with the IDM
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FIG. 7. Flow-density plot as in Fig. 3, simulated with the
IDM without memory effects. To obtain the same degree
of capacity and stability, the parameters T and a have been
changed to 1.05 s and 1 m/s2, respectively.

The question arises to which extent (i) the wide scat-
tering, (ii) the distinct hysteresis effects indicated by the
ratios Qmax/QCT and Qmax/Qjam, and (iii) the low val-
ues of the “measured” densities in congested and jammed
traffic are new features of the IDMM or occur in the origi-
nal IDM without memory effects as well. Figure 7 shows
a simulation with the original IDM, which is a special
case of the IDMM for βT = 1. The virtual detectors dis-
play scattering as well. However, the hysteresis effects
are much smaller and the density of congested traffic is
shifted to higher values, which are, in particular, higher
than the values usually observed in empirical data.

IV. DISCUSSION

We have modeled a memory effect in the behavior of
drivers by coupling existing car-following models to dy-
namical equations for some model parameters such as the
minimum (safe) time gap, the desired velocity, or the typ-
ical acceleration. In this paper, we have used the IDM
as underlying model resulting in the IDMM, the “IDM
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with memory”. The Gipps model [33] seems to be a suit-
able candidate as well. It should be straightforward to
apply the same concept to macroscopic models such as
the GKT [34,14] and to cellular automata. In fact, the
slow-to-start rule [35] can be interpreted as the special
case of an instantaneous adaptation (τ = 0), which is
only effective for standing traffic, i.e., the corresponding
“level-of-service function”, Eq. (5), would be given by
λ0(v) = 1 for v > 0 and λ0(v) = 0 for v = 0.

The concept could be also generalized to include the
traffic density or the velocity variance in determining the
level-of-service function. This would allow to model dif-
ferent kinds of adaptation behavior to different types of
congested traffic such as homogeneous congested traffic
(HCT) and oscillating congested traffic (OCT) [32].

As is the case for the IDM, the IDMM is a deterministic
car-following model with a unique fundamental diagram.
It has two new parameters, the adaptation factor βT

and the adaptation time τ , which can be estimated from
single-vehicle data. Simulations with the IDMM suggest
that the adaptation of drivers to the surrounding traf-
fic happens on time scales of a few minutes and play, in
fact, an important role in explaining the inverse-λ shape
and the wide scattering of flow-density data in the con-
gested regime measured by stationary detectors. Despite
its simplicity, the model seems to be accurate enough
to enable, for the first time, a direct analysis of the con-
ventional interpretation of macroscopic flow-density data
with surprising results both for the theoretician and the
practitioner.

For the theoretician, probably the most interesting re-
sult is the direct demonstration of a simple mechanism
that explains the much-discussed wide scattering of con-
gested traffic by longitudinal traffic instabilities. Impor-
tant for the practitioner, the results suggest that the real
traffic situation, in terms of the traffic density, is often
worse than the macroscopic density data suggest. The
resulting oscillations and even short periods of standing
traffic are hidden in the “scattering” of the data. In con-
trast to previous results guided by theoretical considera-
tions [5] the simulations suggest that congested traffic is
nearly always unstable. This is supported by our analysis
of more than 300 empirical examples of congestion from
various freeways with a new visualization tool [36]. The
majority of all congested traffic patterns displayed stop-
and-go waves, many of them with growing amplitudes
while they travel upstream. Another factor obscuring the
instability of real congested traffic is the often observed
convective stability, i.e., growing perturbations can only
propagate upstream, resulting in homogeneous congested
traffic of high density near the downstream front of con-
gestion (“pinch effect”).

In our simulations, we have excluded most sources that
would not surprise to produce scattering: We have not
assumed heterogeneous multi-lane traffic exposed to fluc-
tuation effects. Instead, we have assumed identical vehi-

cles on a single lane with a dynamics given by a deter-
ministic model with a unique fundamental diagram. We
do not claim, however, that longitudinal instabilities and
the memory effect would be the only cause leading to
the observed scattering. Obviously, heterogeneous traf-
fic plays a role as well. Furthermore, the role of lane
changes remains to be investigated. Finally, it should be
emphasized that we have investigated macroscopic impli-
cations of a microscopic model. To explain microscopic
statistical properties such as the observed scaling law for
the fluctuations of sample-average time headways [21],
one probably needs to simulate both heterogeneous and
multi-lane traffic. Microscopic statistical properties will
be investigated in a forth-coming paper.
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