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Numerical Simulation of Macroscopic Traffic Equations

Dirk Helbing and Martin Treiber

The increasing need for efficient traffic optimization measures is making reliable, fast,

and robust methods for traffic simulation more and more important. Apart from the de-

velopment of cellular automata models of traffic flow, this need has stimulated studies of

suitable numerical algorithms for the solution of macroscopic traffic equations based on

partial differential equations.1–9

The numerical integration of partial differential equations is a particularly difficult task,

and there is no generally applicable method. In contrast to ordinary differential equations,

the most natural explicit finite difference methods such as replacing differentials by forward,

backward, or central finite differences often are numerically unstable,10,11 even in the limit of

very small discretizations in space and time. For example, a necessary condition for stability

is that the maximum speed at which information about the solution can be propagated by

the numerical method must be always greater than the propagation velocity of the exact

solution.10,22

In general, the numerical solution of partial differential equations requires special meth-

ods, which work only under certain conditions.10,22 Implicit integration methods are usually

more stable, but they require the frequent solution of linear systems with multi-diagonal

matrices. In this column, we will discuss only explicit methods, because they are useful for

the varying boundary conditions found in realistic traffic simulations, where data is con-

tinuously fed into the simulation. In addition, explicit methods are more flexible for the

simulation of on- and off-ramps or entire road networks.

Macroscopic Traffic Models

Because the number of vehicles is conserved, all macroscopic traffic models are based on
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the continuity equation for the vehicle density ρ(x, t) per lane at position x and time t:

∂ρ

∂t
+

∂(ρV )

∂x
= ±ν±(x, t) , (1)

where V (x, t) is the average vehicle velocity. According to Eq. (1), the temporal change

∂ρ/∂t of the vehicle density is given by the spatial change −∂Q/∂x of the traffic flow

Q(x, t) = ρ(x, t)V (x, t) and the rate ν±(x, t) ≥ 0 of vehicles entering (+) or leaving (−) the

highway at on- or off-ramps.

To describe time and spatially varying velocities such as occur in emergent traffic jams

and stop-and-go traffic, we need a dynamical velocity equation. For most continuous models,

this equation can be written as12

∂V

∂t
+ V

∂V

∂x
︸ ︷︷ ︸

Transport Term

= −1

ρ

∂P

∂x
︸ ︷︷ ︸

Pressure Term

+
1

τ
(Ve − V )

︸ ︷︷ ︸

Relaxation Term

. (2)

According to Eq. (2), the change ∂V/∂t of the average vehicle velocity is given by three

terms. The transport term originates from the propagation of the velocity profile with the

velocity V of the vehicles. The pressure term reflects either an anticipation of spatial changes

in the traffic situation or dispersion effects due to a finite variance of the vehicle velocities.

The relaxation term describes the adaptation to a dynamic equilibrium velocity Ve with a

relaxation time τ .

All forms of congested traffic seem to have almost universal properties which are largely

independent of the initial conditions and the spatially averaged density. For example, the

characteristic outflow Qout from traffic jams is about 1800 ± 200 vehicles per kilometer and

lane, and a typical dissolution velocity C of about −15± 5 kilometers per hour.13 This uni-

versality arises from the highly correlated state of motion produced by traffic congestions.14

In particular, the outflow Qout is related to the time interval between successive departures

from the traffic jam. Therefore, the outflow is almost independent of the kind and density

of congested traffic. As a consequence of the constant outflow, the dissolution velocity of

traffic jams is nearly constant as well. These observations and the transition from free to
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“synchronized” congested traffic15 are correctly described by the nonlocal, gas-kinetic-based

traffic model,16–19 which we now introduce.

The Nonlocal, Gas-Kinetic-Based Traffic Model

Our approach is to derive macroscopic traffic models from gas-kinetic traffic

equations,12,16 which are obtained from “microscopic” models of driver-vehicle behavior.16

Gas-kinetic traffic models have been proposed earlier, but the correct treatment of the most

interesting regime of moderate and high densities was still an open problem.

We have managed to evaluate the vehicular interaction term of the gas-kinetic traffic

model almost exactly.16 The analytical result can be represented by the nonlocal, dynamical

equilibrium velocity Ve:

Ve = V0



1 − θ + θ′

2A(ρmax)

(

ρ′T

1 − ρ′/ρmax

)2

B(δV )



 . (3)

According to Eq. (3), Ve is given by the desired (maximum) velocity V0, reduced by a term

which reflects necessary deceleration maneuvers. Here, ρmax is the maximum vehicle density,

and T is the average time headway at large densities. For example, German authorities

require that the distance in meters to the front vehicle be not less than half the velocity in km

per hour, which gives a time headway of T = 1.8 s. For the intra-lane variance θ, we assume

the constitutive relation θ = A(ρ)V 2 where A(ρ) is given by Eq. (5). The prime indicates

that the variable is calculated at the advanced “interaction point” x′ = x + γ(1/ρmax + V T )

with 1 ≤ γ < 2 rather than at the actual position x. This factor accounts for the fact that

drivers anticipate the behavior of vehicles in front of them. The monotonically increasing

“Boltzmann factor”

B(δV ) = 2

[

δV
e−δ2

V
/2

√
2π

+ (1 + δ2
V )
∫ δV

−∞

dy
e−y2/2

√
2π

]

(4)

describes16 the dependence of the braking interaction on the dimensionless velocity difference

δV = (V − V ′)/
√

θ + θ′ between the actual location x and x′. In homogeneous traffic, we

have B(0) = 1. If the preceding cars are much slower (δV ≫ 0), the interaction strength
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given by B is particularly large, and it follows that B(δV ) = 2δ2
V . For δV ≪ 0, we have

B(δV ) ≈ 0. That is, because the distance to the next vehicle is increasing, the vehicle will

not brake, even if its distance is smaller than the safe distance.

Finally, the dynamics of the intra-lane variance can be approximated by the constitutive

relation

θ(x, t) = A(ρ)V 2(x, t) =

[

A0 + ∆A tanh

(

ρ(x, t) − ρc

∆ρ

)]

V 2(x, t) , (5)

where the coefficients A0 = 0.008, ∆A = 0.02, ρc = 0.27ρmax, and ∆ρ = 0.05ρmax have been

obtained from single-vehicle data on a section of the Dutch motorway A9.16 Simulations

of sections of other motorways, for example, the German motorway A8, give a somewhat

lower value of ∆A = 0.01, which we will use in the following. Equation (5) shows that the

standard deviation
√

θ of vehicle velocities is proportional to the average velocity V , with a

density-dependent proportionality factor which is small for the density range found in free

traffic. The velocity variance also enters the gas-kinetic traffic pressure

P (x, t) = ρ(x, t)θ(x, t) . (6)

If not explicitly stated otherwise, the simulation results presented here were calculated with

the model parameters V0 = 110 km/h, τ = 32 s, T = 1.8 s, ρmax = 160 vehicles/km, and

γ = 1.2.

The main difference between the gas-kinetic-based traffic model and other macroscopic

traffic models is the nonlocal character of the braking term. The nonlocal term in Eq. (3)

has smoothing properties similar to those of a viscosity term, but its effect is forwardly

directed and, therefore, more realistic. In contrast, models with an explicit viscosity term20

lead to unphysical humps in the vehicle density (see Figure 1) and even negative velocities21

(see Figure 2). Our model also has favorable properties with respect to numerical stability

and integration speed, and hence allows a robust real time simulation of freeway stretches

up to several thousand kilometers on a personal computer.

Some Explicit Finite Difference Methods
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A desirable property of the above traffic equations is that they can be formulated in

terms of a conservation equation with a sink/source term s:

∂u

∂t
+

∂f (u)

∂x
= s(u) . (7)

This form makes it possible to use a variety of numerical standard methods developed for the

simulation of hydrodynamic problems.10,11,22 The conservative form of the traffic equations

reads

∂ρ

∂t
+

∂Q

∂x
= ±ν±(x, t), (8)

and

∂Q

∂t
+

∂(Q2/ρ + P )

∂x
=

ρVe − Q

τ
± ν±V ± , (9)

where Q(x, t) = ρ(x, t)V (x, t) is the traffic flow and V ± denotes the average velocity of

vehicles which enter (+) or leave (−) the freeway at ramps. For the case V ± 6= V , we obtain

the additional terms ±ν±(V ± − V )/ρ in (2). We have

u = [ρ, Q] , (10)

f = [Q, (Q2/ρ + P )] , (11)

s = [± ν±, (ρVe − Q)/τ ± ν±V ±] . (12)

For the explicit numerical solution methods we will discuss, x and t are discretized with

uniform values of ∆x and ∆t, respectively. Hence, we calculate u at the discrete points

(j ∆x, n ∆t) with j, n ∈ {0, 1, 2, . . .}. For brevity, we use the notation un
j = u(j ∆x, n ∆t).

We will discuss the following numerical integration methods:10,22

1. Lax-Friedrichs method

un+1
j =

un
j−1 + un

j+1

2
− ∆t

2∆x
(fn

j+1 − fn
j−1) + ∆t sn

j . (13)

2. Upwind method
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un+1
j = un

j − ∆t

∆x
(fn

j − fn
j−1) + ∆t sn

j . (14)

3. MacCormack method

ũn
j = un

j − ∆t

∆x
(fn

j − fn
j−1) + ∆t sn

j , (predictor) (15)

un+1
j =

1

2

[

ũn
j + un

j − ∆t

∆x
(f̃

n

j+1 − f̃
n

j ) + ∆t s̃n
j

]

. (corrector) (16)

4. Lax-Wendroff method

u
n+ 1

2

j+ 1

2

=
1

2

[

un
j + un

j+1 −
∆t

∆x
(fn

j+1 − fn
j ) +

∆t

2
(sn

j + sn
j+1)

]

(predictor) (17)

un+1
j = un

j − ∆t

∆x

[

f
n+ 1

2

j+ 1

2

− f
n+ 1

2

j− 1

2

]

+
∆t

2

[

s
n+ 1

2

j+ 1

2

+ s
n+ 1

2

j− 1

2

]

. (corrector) (18)

Consistency Order. If the spatial variation of u is sufficiently smooth, the Lax-Friedrichs

and upwind methods are first-order, that is, the upper bound of the local error is proportional

to α if ∆x and ∆t are simultaneously decreased by a factor of α. In general, the upwind

method is not stable and the differential operator needs to be decomposed into parts which

are treated by upwind and downwind differencing, respectively (the Godunov method22,5–7).

Fortunately, for traffic equations of the form (2), the upwind method is stable (and equivalent

to the Godunov method).

The two-step MacCormack and Lax-Wendroff methods are second-order, that is, the

upper bound of the local error is proportional to α2. However, for shock-like solutions, the

order is lower for all of the above integration methods.22 Note that the predictor step of

the MacCormack method is an ordinary upwind step, and the corrector step consists of the

average between the predictor and a “downwind” step with f calculated with the values of

the predictor. Interchanging the order of the upwind and downwind differencings of the two

steps has nearly no effect for the equations investigated here.

Accuracy. Although the discretization errors associated with nonlinear equations are

difficult to determine, good estimates are usually obtained by doing a local linearization, at

least for smooth solutions.22 Because realistic traffic models can produce sharp gradients, but
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no real shock fronts, the linearization is applicable to the numerical treatment of macroscopic

traffic equations. This analysis shows that the upwind method is more accurate than the

Lax-Friedrichs method.

Although the main discretization error of the Lax-Friedrich and upwind methods yields

a numerical diffusion, which causes a smoothening of shock fronts (see Figures 3a, and (b)),

for the MacCormack and Lax-Wendroff methods there is numerical dispersion, which is asso-

ciated with a slower propagation of waves with small amplitudes and can lead to oscillations

in the density and flow fields behind (but not before) large gradients (cf. Figures 3c and

(d)). However, nonlinear instabilities (see below) also may lead to oscillations. An example

is the oscillations at the downstream front of the large amplitude jam of Figure 3d.

Numerical Stability. An integration method is numerically unstable if errors grow ex-

ponentially, which usually leads to wildly oscillating density profiles with very short wave

lengths and eventually to overflow error. Even in the quasi-linear case, the above explicit

discretization methods can lead to three types of instabilities which implies three conditions

for numerical stability:

1. Convective instability. Instabilities of the finite difference method for the flux term

lead to the Courant-Friedrichs-Lewy condition10,22 which for our model becomes

|∆t| ≤ ∆x

V0

, (19)

where V0 is the maximum average velocity. For example, for V0 = 40m/s (144 km/h)

and a spatial discretization of ∆x = 20 m, we obtain ∆t ≤ 0.5 s.

2. Diffusion instability. Models which contain an explicit viscosity term D∂2V/∂x2,

change the otherwise hyperbolic character of the partial differential equations to a

parabolic one. For numerical stability, the additional diffusional Courant-Friedrichs-

Lewy condition D (∆x)2/(2 ∆t) ≤ 1 must be fulfilled.10,22 This condition does not

apply to simulations of the nonlocal, gas-kinetic-based traffic model.
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3. Relaxational instability. Due to the finite ∆t, instabilities can develop for spatially

homogeneous density and flow fields if ∆t is larger than one of the local relaxation

times 1/rk, where rk are the eigenvalues of the functional matrix of the sink/source

term s. This condition puts further restrictions on ∆t, which depend on the maximum

vehicle density in the simulation.

Because viscosity and diffusion terms are replaced by a nonlocal term, coarser discretiza-

tion is possible in the above gas-kinetic-based traffic model than in most other traffic models,

allowing real time simulation of much larger systems. For simulations of this model, good

results are obtained for ∆x = 20m and ∆t = 0.4 s for the MacCormack as well as the upwind

method. Figure 4 shows that a finer discretization gives almost identical results.

The development of traffic instabilities starting with almost homogeneous initial traffic is

a very strict test of numerical accuracy (see Figure 4). In most situations, for example, when

simulating fronts or already developed congested traffic, the accumulated discretization error

is much smaller.

In addition to the quasi-linear instabilities discussed above, genuine nonlinear instabilities

may arise for certain numerical methods and simulation conditions. An example is the

oscillations at the downstream front of the large amplitude jam of Figure 3d. It turns out

that second-order methods are more sensitive to these instabilities. Note that, although

the quasi-linear behavior is the same for the MacCormack and Lax-Wendroff methods, the

nonlinear behavior can be different.10 For the above traffic equations, the MacCormack

method is more stable than the Lax-Wendroff method, and hence we will use the MacCormack

method whenever a second-order method is desired.

When simulating the nonlocal model with one of the first-order methods, we did not

observe nonlinear instabilities. Furthermore, higher order methods are not necessarily more

accurate,11 especially for large gradients. Thus, one should always implement different nu-

merical methods and compare their simulation results. Aside from their double integration

speed, it is sometimes preferable to use first-order methods (causing somewhat smoothed
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wave fronts) instead of second-order methods (producing oscillations and sometimes non-

linear numerical instabilities). One reason is that oscillations act like perturbations, which

may give rise to additional traffic jams that do not correspond with reality.

Initial and Boundary Conditions

To calculate traffic flows, it is necessary to specify the initial and boundary conditions.

The initial conditions are completely determined by specifying u(x, 0) in a range [0, L + δ],

where L is the length of the simulated section and δ is the maximum nonlocality, which

is of the order of 30m in the gas-kinetic-based model. In systems with open rather than

periodic boundaries, the initial conditions usually influence the simulation results only for

a short time, at least, if we starts with free traffic, because errors in the specification of the

initial conditions are propagated outside the simulated freeway stretch very quickly. Thus,

the choice of the initial conditions is unimportant. For example, we can start with a linear

interpolation of the measured initial boundary values. However, because of conservation of

vehicle number, the initial conditions are relevant for closed systems with periodic boundary

conditions, which are given by u(0, t) = u(L, t), and ∂u(0, t)/∂x = ∂u(L, t)/∂x.

The specification of time-dependent boundary conditions is much more involved. The

following options are reasonable in different situations:

1. Dirichlet boundary conditions are given by the empirically measured values u(0, t) and

u(L, t) at both ends of the particular freeway stretch. For the values at x ∈ [L, L + δ]

beyond the right boundary (required by the nonlocal term of the gas-kinetic-based

model), a constant u(x) = u(L) of the boundary values is assumed.

2. Homogeneous von Neumann boundary conditions assume that the density and vehicular

flow remain unchanged at the boundaries x = 0 and x = L:

∂u(0, t)

∂x
= 0 ,

∂u(L, t)

∂x
= 0 . (20)

Again, a constant value of u is assumed for x > L.
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3. Free boundary conditions assume that the traffic state is smooth at the boundary,

∂2u(0, t)

∂x2
=

∂2u(L, t)

∂x2
= 0 , (21)

with a linear extrapolation u(L + δx) = u(L) + δx ∂u(L)/∂x for δx ∈ [0, δ].

4. In- and outflows ±Qrmp at on-ramps (+) and off-ramps (−), can be considered as

follows.17–19 If n is the number of freeway lanes (without ramps) and Lrmp is the

length of the ramp, we simply set

ν± =
Qrmp

nLrmp
. (22)

Generally speaking, periodic boundary conditions are best suited for theoretical investi-

gations of stability, and Dirichlet boundary conditions are best for simulations of real traffic

with measured values of velocity and the traffic flow at the boundary. Homogeneous von

Neumann or free boundary conditions for “absorbing” boundaries should be used if the traf-

fic situation outside the boundaries is not of interest. The effects of the latter two boundary

conditions are nearly the same. An alternative to using open boundaries is to apply periodic

boundary conditions for distances which are much longer than the freeway stretch of interest.

However, for a simulated time interval Tsim = 2 h, the required additional length is order

V0Tsim ≈ 200 km, which considerably reduces the efficiency of the numerical integration.

There are problems associated with using Dirichlet boundary conditions. Imposing

Dirichlet boundary conditions at both sides usually leads to an overdetermined system,

so that either numerical instabilities occur or the boundary conditions are simply ignored

by the integration method. Even Dirichlet boundary conditions at one of the two bound-

aries will lead to an unphysical, ill-posed problem in certain situations. This case becomes

clear when imposing downstream Dirichlet boundary conditions for free traffic flow at low

densities. If the imposed boundary flow is higher than the flow arriving from the simulated

section at the boundary, the continuity equation will lead to a decrease of the density, which
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eventually results in unphysical negative densities. On the other hand, if Dirichlet bound-

ary conditions are imposed at the upstream boundary in a situation of congested traffic

where the boundary flow is higher than the equilibrium flow, the continuity equation leads

to an increased density implying an even lower equilibrium flow. This positive feedback will

eventually lead to a divergence of the density near the boundary.

We solve this problem by dynamically switching between Dirichlet and von Neumann

boundary conditions, depending on the density close to the boundaries. The idea is to

use Dirichlet boundary conditions if the direction of information flow points towards the

simulation stretch, and von Neumann boundary conditions otherwise. Because the traffic

equations contain source terms like the relaxation term, the propagation direction of in-

formation cannot be obtained from the characteristic velocities (which are the propagation

velocities of locally linearized homogeneous partial differential equations like conservation

equations without source terms. Rather, the linearized group velocity vg = ∂Qe/∂ρ of kine-

matic waves gives a good criterion for separating the traffic situation into free traffic (vg > 0)

whose information flow points downstream, and congested traffic (vg < 0) where the infor-

mation flow points upstream. Based on this idea, the following hybrid boundary conditions

yield good results: If the upstream boundary values ρ0(t) and Q0(t) satisfy

ρ0(t) ≤ β1ρm or Q0(t) < β2Q(∆x, t) (23)

Dirichlet boundary conditions are used; ρm is the density associated with maximum equi-

librium flow, β1 = 0.95, and β2 = 0.98. Otherwise, homogeneous Von-Neumann boundary

conditions are applied. For the downstream boundary conditions, the directions of the in-

equalities are exchanged. Note that these boundary conditions include situations where

Dirichlet boundary conditions are necessary at both sides (for example, when a jam enters

the downstream boundary of the simulation region) as well as situations where no Dirichlet

boundary conditions are allowed at all (when congested traffic formed at an inhomogeneity

within the simulated region reaches the upstream boundary).

We illustrate the effects of different boundary conditions by a simulation of the German
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motorway A8 near Munich with real traffic data using the upwind method. Figure 5a shows

a space-time plot of the density with Dirichlet boundary conditions on both sides. The wing-

like regions of higher density represent “synchronized” congested traffic15 forming upstream

of a flow-reducing inhomogeneity,19 while the region of the highest density represents a traffic

jam entering through the downstream boundary. Note that the unnecessary downstream

boundary conditions for t < 17:30 h are ignored by the upwind differencing, whereas the

traffic jam entering the downstream boundary for 17:30 h< t < 18:20 h is accepted. This

desirable behavior cannot be expected in general. For example, the MacCormack method is

unstable in this situation.

Figure 5b demonstrates the remarkable property that the boundary conditions for the

density are nearly irrelevant. Although the boundary conditions for the flow are the same as

in Fig. 5a, a constant amount of 20 vehicles/km has been added artificially to the upstream

boundary conditions for the density. Nevertheless, the traffic dynamics, in particular the

spontaneous breakdown at x ≈ 40 km and t ≈ 17:00 h, is nearly unchanged. This behavior

can be explained by recognizing that the inflow into the freeway and the outflow from it

determine the number of vehicles on the freeway stretch, which cannot be changed by the

traffic dynamics between the boundaries. Hence, changes of the traffic flow are far reaching,

while the influence of density (or velocity) boundary conditions is restricted to the distance

that the vehicles drive during the relaxation time.

Figure 5c illustrates the effect of using homogeneous von Neumann downstream bound-

ary conditions instead of Dirichlet boundary conditions. For t < 18:00 h, the situation is

identical to Figure 5a. For t > 18:00 h, however, the upstream moving traffic jam passing

the downstream boundary is ignored. Hence, the simulation result is very different when

the direction of the downstream information flow changes.

Finally, Fig. 5d shows a simulation with the hybrid boundary conditions (see Eq. (23))

and the upstream boundary shifted downstream by 3.5 km. In this case, the traffic jam

reaches the upstream boundary, which is handled by the hybrid boundary conditions, while
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all other boundary conditions would lead to a numerical instability for any integration

method.

Summary

We have seen that traffic flows are characterized by the occurrence of congested regions,

jams, and stop-and-go waves which are associated with large gradients of the vehicle density

and average velocity. This rich behavior has stimulated an intense research activity. We have

discussed the problems of macroscopic traffic simulations which are related to the numerical

integration of systems of coupled nonlinear partial differential equations. Despite the differ-

ences with hydrodynamic equations, many integration methods developed for conservation

equations turn out to be applicable. Compared to implicit methods,10 explicit methods are

less robust, but much more flexible with regard to time-dependent boundary conditions and

(variational) optimization problems, and are usually computationally faster. Among the

explicit first-order methods, the upwind method is more accurate than the Lax-Friedrichs

method. The MacCormack and the two-step Lax-Wendroff methods are second-order, but

they are less efficient by a factor of two and produce unrealistic oscillations close to steep

gradients. The numerical precision may be improved by “high resolution methods,”22 where

a first-order method is used for large gradients and a second-order method is used for small

gradients. This approach may combine the accuracy of the second-order methods with the

smoothness of the first-order methods.

The most important factor that determines the computation time is the choice of the

traffic model. In particular, the simulation of the nonlocal, gas-kinetic-based traffic model is

significantly more efficient than the numerical solution of models with viscosity or diffusion

terms. This efficiency is mainly related to the fact that the diffusional Courant-Friedrichs-

Lewy condition, which does not apply for nonlocal terms, is usually far more restrictive than

the other instability conditions, especially for fine discretizations. Because diffusion terms

also produce unrealistic effects close to steep gradients, it may be reasonable to generally

replace models with diffusion or viscosity terms by nonlocal models. Anyway, diffusion and
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viscosity terms are often a lowest-order approximation of nonlocal terms. They are mainly

used for historical reasons, because they can be better treated analytically.

Finally, we have discussed suitable specifications of the boundary conditions. In most

previous simulation studies, periodic boundary conditions were used to circumvent the in-

tricate problems related to open boundaries, which are required for the simulation of real

freeways. We found that Dirichlet boundary conditions work in some cases, but fail in others,

because of overspecification. The most successful treatment is based on hybrid boundary

conditions which switch between Dirichlet and homogeneous von Neumann (or free) bound-

ary conditions depending on the respective direction of information flow.
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Suggestions for Further Study

1. Parameter-dependence of flow-density relation. (a) Find the density dependence of the

stationary, homogeneous solution for the average velocity Ve in the nonlocal, gas-kinetic-

based traffic model by setting the temporal and spatial derivatives to zero and solving for

V . (b) The flow-density relation Qe(ρ) = ρVe(ρ) depend on which of the model parameters,

V0, τ , γ, T , and ρmax? Which parameters are irrelevant for the stationary homogeneous

solution? (c) Plot Qe and the velocity-density relation Ve for different parameter sets. Start

with the values used in this column. Check that a speed limit (that is, a decrease in

V0) reduces the flow at small densities, but only by a negligible amount for medium and

high densities. In addition, compare pure car traffic with V0 = 130 km/h, T = 1.2 s, and

ρmax = 160 vehicles/km with traffic containing a considerable fraction of trucks with, for

example, V0 = 90 km/h, T = 3 s, and ρmax = 110 vehicles/km. In which density regimes do

the flow-density relations almost agree, and in which are they very different?16,18
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2. Stability of homogeneous traffic with respect to a localized perturbation. Simulate freeway

traffic for a circular road of 10 km circumference with the nonlocal, gas-kinetic-based traffic

model and the parameters used in this column. Assume homogeneous equilibrium traffic

of density ρ, and add to the density a localized perturbation of amplitude ∆ρ so that the

initial conditions are given by23

ρ(x, 0) = ρ + ∆ρ
[

cosh−2
(

x − x0

w+

)

− w+

w−
cosh−2

(
x − x0 − ∆x0

w−

)]

,

Q(x, 0) = Qe(ρ) .

Here, x0 and x0+∆x0 are the positions of the positive and negative peaks of the perturbation

with widths w+ and w−, respectively. Choose w+ = 200m, w− = 800m, and ∆x0 =

w+ + w− = 1000m. Use linear interpolation to calculate the nonlocal terms and take into

account that the circular road implies that u(L+δx) = u(δx). Perform the simulations with

the upwind method on a fixed grid with spatial and temporal discretizations of ∆x = 20m

and ∆t = 0.4 s.

(a) Choose a small perturbation amplitude of ∆ρ = 1 vehicle/km and run the simulation

for 30 minutes. Check that the perturbation does not grow for ρ < ρc2 and ρ > ρc3 with

ρc2 = 29 vehicles/km and ρc3 = 47 vehicles/km, but gives rise to large-amplitude stop-and-

go waves for ρc2 ≤ ρ ≤ ρc3.

(b) Use larger perturbations of amplitudes up to ∆ρ = 60 vehicles/km and show the

traffic flow is metastable. To do so, show that the model produces a single traffic jam

for ρ ∈ (ρc1, ρc2) with ρc1 = 27 vehicles/km and a dipole-like localized structure for ρ ∈

(ρc3, ρc4) with ρc4 = 50 vehicles/km, if ∆ρ exceeds a (density-dependent) critical amplitude;

homogeneous traffic flow is found for subcritical perturbation amplitudes.23,16

(c) In sufficiently large systems, there exists a subset of densities ρ ∈ (ρcv, ρc3) in the

linearly unstable regime where traffic is convectively stable.19 This stability means that the

localized perturbation will disappear for t → ∞ at any given location x while, nevertheless,

the global maximum of the perturbation grows (because the system is linearly unstable). In
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our case, ρcv is given by the value of ρ at which the downstream boundary of the perturbed

zone does not move. Illustrate the case of convective stability by making a three-dimensional

plot of ρ(x, t) of a simulation running for 15 minutes with ρ = 45 vehicles/km and ∆ρ = 1

vehicles/km. Show that ρcv = 42.5 vehicles/km.

3. Characteristic parameters.16 Assume a circular road, model parameters, and initial con-

ditions as in Problem 2.

(a) Evaluate the densities of fully developed traffic jams and of free traffic at the outflows

of jams. Determine the associated flows and the propagation velocity of jam fronts. Hint:

To obtain the densities and flows, run the simulation for 60 minutes and analyze the fields

ρ(x, t) and Q(x, t). The jam density (density of free traffic) is simply the global maximum

(minimum) of the density, and the jam flow (outflow from jams) is the global minimum

(maximum) of the flows. To obtain the group velocity, save the density as a function of

time at a given position (for example, x = 10 km) and determine the time intervals needed

for the jams to propagate around the circular road. Use the last interval to avoid effects of

transients.

(b) Plot the densities, the flows, and the propagation velocity in separate plots as a

function of the average density ρ for a perturbation amplitude ∆ρ = 10 vehicle/km. What

do you find? Check that there is a density range in which the density inside and outside of

traffic jams, the associated flows, and the propagation velocity are independent of ρ, so that

these quantities are characteristic parameters of traffic flows.

(c) Show numerically that the traffic inside and outside of jams is nearly in equilibrium.

Also show that the group velocity can be expressed analytically in terms of the densities

and flows inside and outside of jams. This relation means that only two of the characteristic

parameters, for example, the group velocity and the outflow from jams, are independent

quantities.

(d) Do Problems 2a, 2b, and 3a for different values of the relaxation time τ . Show

that with increasing τ , the region of linearly unstable traffic and the regions of metastable
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traffic and the jam density increase, while the outflow from jams decreases. In particular,

homogeneous traffic is always stable for τ ≤ 18 s.

4. “Synchronized” congested traffic.17 This traffic state occurs if a perturbation reaches a

stationary inhomogeneity of the road which can be an on-ramp for example.

(a) Simulate a freeway of length 10 km with open boundaries and an on-ramp of length

Lrmp = 400m at xrmp = 5km by assuming in Eqs. (8) and (9) a source term ν+ = Qrmp/L

inside the ramp region x ∈ [xrmp − L/2, xrmp + L/2], but ν+ = 0 otherwise. Assume

τ = 40 s, the usual values for the other model parameters, and homogeneous equilibrium

traffic of density ρ = 15 vehicles/km without perturbations as initial conditions. To obtain

stationary conditions, simulate the first 20 minutes with a constant ramp flow Qrmp =

500 vehicles/h using homogeneous von Neumann boundary conditions at both sides of the

road. Now, introduce a perturbation of amplitude ∆Qrmp = 150 vehicles/km by linearly

increasing the ramp flow up to Qrmp + ∆Qrmp at t = 22.5min, and decreasing it again to

Qrmp at t = 25min. After running the simulation for a total of 60 minutes, you should

see “synchronized” congested traffic, that is, an increasing region of high density and low

velocity, but relatively high flow, whose upstream front is propagating upstream, while the

downstream front is pinned at the ramp.

(b) Verify that “synchronized” congested traffic is in equilibrium and determine the

numerical value of its outflow Q̃out. Show that the propagation velocity vg of the upstream

front can be expressed by the relation

vg =
Q̃out − Qrmp − Qmain

ρcong(Q̃out − Qrmp) − ρfree(Qmain)
,

where Qrmp and Qmain = Qe(ρ) are the inflows at the ramp and to the main road. The

densities ρcong(Q) and ρfree(Q) denote, in accordance with Qe = ρVe(ρ), congested traffic

(ρ ≥ 31 vehicles/km) and free traffic (ρ < 31 vehicles/km), respectively.

5. Different traffic states close to an on-ramp.19 Varying the initial traffic density, the

length of the on-ramp, and the ramp flow leads to several interesting states of congested
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traffic. Do simulations as in Problem 4 with (a) ρ = 20 vehicles/km, Qrmp = 250 vehicles/h,

∆Qrmp = 150 vehicles/km, (b) ρ = 20 vehicles/km, Qrmp = 150 vehicles/h, ∆Qrmp = 150

vehicles/km, and (c) ρ = 17 vehicles/km, Qrmp = 250 vehicles/h, ∆Qrmp = 550 vehicles/km.

You should observe (a) oscillating congested traffic, (b) triggered stop-and-go waves, and (c)

pinned localized congestion. By varying the inflow Qmain = Qe(ρ) to the main road, verify

that oscillating congested traffic emerges, if the expression for vg in Problem 4 is negative

(upstream moving front); otherwise pinned localized congestion or free traffic occur.
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FIG. 1. Simulation of discontinuous initial conditions for (a) the non-local, gas-kinetic-based

traffic model, and (b) for a typical traffic model with a viscosity term.20 The density profile is

shown at t = 0 s (—), 10 s (– –), 30 s (- - -), 60 s (· · ·), 120 s (– · –), and 240 s (– · ·). The inset of

(b) shows an unrealistic detail of the profile (upstream front) at t = 10 s. Also note that, in (b),

the upstream front propagates too fast.
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FIG. 2. First stages of the density and velocity profiles evolving from a discontinuous upstream

front (solid lines) corresponding, for example, to an end of a traffic jam behind a curve. The

lines correspond to t = 0 s (—), 5 s (– –), 10 s (- - -), 20 s (· · ·), 60 s (– · –), and 120 s (– · ·).

Parts (a) and (b) show simulations with the non-local, gas-kinetic-based model (∆x = 20 m,

∆t = 0.1 s), while (c) and (d) correspond to a typical traffic model with a viscosity term.20 To obtain

comparable equilibrium velocities in the initial jam, the initial jam densities ρ
(a/b)
jam = 140 vehicles/h

and ρ
(c/d)
jam = 105 vehicles/h were chosen differently. In the viscosity traffic model , the finite velocity

diffusion leads to an increase of velocity also in the congested part (see (d)) and to a subsequent

further increase of density (see (c)). The ensuing positive density gradient would lead to negative

velocities for an initial jam density higher than 106 vehicles/km, which is much lower than the

maximum density ρmax = 160 vehicles/km.
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FIG. 3. Comparison of the upwind method, (a) and (c), with the MacCormack method,

(b) and (d), for simulations of the nonlocal, gas-kinetic-based traffic model with discontinuous

initial conditions (—). The plots correspond to transitions between free traffic at two different

vehicle densities (see (a) and (b)), and to transitions to and from congested traffic with backwards

propagating fronts (see (c) and (d)). The density is shown at t = 0 s (—), 10 s (– –), 30 s (- - -), 60 s

(· · ·), and 120 s (– · –) (only in (c) and (d)). In the MacCormack method simulations, the oscillations

behind the large gradient result from the dispersion error (see (b)), whereas the oscillations around

x = 3 km originate from nonlinear instabilities (see (d)).
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FIG. 4. Spatio-temporal formation of stop-and-go waves, simulated with the non-local,

gas-kinetic-based traffic model, using different integration methods and discretizations. (a) Mac-

Cormack method with ∆t = 0.4 s and ∆x = 20 m. (b) Upwind method with ∆t = 0.4 s and

∆x = 20 m. (c) Upwind method with ∆t = 0.01 s and ∆x = 20 m. (d) Upwind method with

∆t = 0.1 s and ∆x = 5 m.
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FIG. 5. Simulation with empirical boundary conditions at the German freeway A8 near Mu-

nich. with the model parameters V0 = 130 km/h for x ≤ 41 km, V0 = 97 km/h for x > 41 km,

τ = 32 s, T = 2.0 s, ρmax = 110 vehicles/km, and γ = 1.2, A0 = 0.008, ∆A = 0.01, ρc = 0.27ρmax,

and ∆ρ = 0.1ρmax. Note that the decreased desired velocity for x > 41 km reflects a flow-reducing

gradient on the freeway stretch. (a) Dirichlet boundary conditions, applied to ρ and Q at the up-

stream and downstream boundaries. We can distinguish two different kinds of congestion: a region

of “synchronized” traffic17,19 with increased homogeneous density, and a backwards propagating

traffic jam entering the freeway stretch at the downstream boundary. Dirichlet boundary condi-

tions are applicable here, because the traffic jam does not reach the upstream boundary. (The jam

dissolves before, as the inflow decreases in the course of time.) (b) As in (a), but with a constant

∆ρ = 20 vehicles/km added to the measured density at the upstream boundary. The congested

traffic enforced at the boundary relaxes to free traffic very quickly. Note that the downstream

traffic patterns do not change significantly, because the boundary flows (and, hence, the number

of entering and leaving vehicles per time unit) are the same as in (a). Nevertheless, this result

suggests that the congested traffic patterns are self-organized structures. (c) As in (a), but with

homogeneous von Neumann boundary conditions for flow and density at the downstream boundary,

which ignore the upstream moving traffic jam entering at the downstream boundary. However, the

homogeneous congested region of “synchronized” traffic is correctly reproduced, which indicates

that it is not triggered by the downstream boundary condition, but it is rather generated by the

inflow to the motorway at the upstream boundary together with the flow-reducing gradient begin-

ning at x = 41.0 km. (d) Simulation with the hybrid boundary conditions (23). Compared to (a),

we shifted the upstream boundary by 3.5 km in downstream direction, so that it is reached by the

jam. The resulting spatio-temporal traffic patterns are nearly identical as in (a), indicating that

the hybrid boundary conditions handle dynamically emerging congestion in a natural way, even at

the boundaries.
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