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Abstract

This thesis contributes to the development of traffic microsimulation for long span bridges.
Microsimulation is used to model measured traffic flow conditions taking into account the
effects of vehicle interactions and driver behaviour. Current bridge design loading models in
design codes are far too conservative. This is not an issue in most new builds, as an increase
in the strength of the bridge is not too expensive. However in the area of existing bridges that
are presumed to require repair or replacement, great cost savings can be made by proving that
an existing bridge is safe for the load carried during its lifetime. Traffic microsimulation
allows greater volumes of traffic data to be generated that would otherwise be very costly and
time consuming to accumulate. Therefore more traffic can be analysed using traffic
microsimulation, resulting in a more accurate assessment of the ultimate traffic loading on

long span bridges.

The maximum load on long span bridges occurs due to congested traffic. This thesis assists in
the further development of accurate and efficient modelling of congested traffic. Evolvetraffic
is a traffic microsimulation model for bridge loading and uses the IDM car following model
and the MOBIL lane changing model to simulate real traffic flow. Between the IDM and
MOBIL, there are 10 parameters that can be altered by the user to describe different driver
characteristics. This thesis carries out a sensitivity analysis on these parameters and discovers
which parameters have the most effect on the lifetime load of long span bridges. By
neglecting parameters which have no effect on congested traffic loading, the process of
simulating congested traffic can be made simpler with less variables and therefore more user

friendly.
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1 Introduction

Highway bridge load models in bridge design codes are generally quite conservative. Whilst
this is not a problem for most newly constructed bridges, the codes are particularly
conservative for the renovation of existing bridges. The cost of repairing existing bridges to
the existing conservative loading codes is considerable and is an area where large savings can
be made. This has given rise to the increase in the development of accurate assessments of

the actual loads that a bridge may be subject to.

Traffic microsimulation can be used be estimate rare extreme loading events that may result
from the traffic at a measured site in the bridge lifetime. This thesis aims to assist in the
advancement of such microsimulation techniques by conducting a sensitivity analysis on
EvolveTraffic, a traffic microsimulation model for bridge loading. This study is particularly
interested in congested traffic on long span bridges. By varying each individual IDM
parameter while keeping every other variable at a constant level and simulating the traffic
travelling across a 100m long simply supported bridge, the change in the moments in the
bridge due to each parameter can be calculated. The significance of each parameter with
respect to the moment in the bridge can then be determined. This will allow greater

knowledge of which parameters benefit traffic microsimulation and which are not required.




2 Literature Review

2.1 Introduction

This chapter introduces the relevant information related to the microsimulation of congested
traffic on long span bridges. Section 2.2 briefly introduces to concept of Weigh-In-Motion
(WIM) and its advantages. Section 2.3 reviews the simulation of traffic. It lists the three main
types of traffic models for bridge load effect and discusses in more detail the simulation of

real traffic flow and outlines the various modelling methods previously developed.

2.2  Weigh-In-Motion

In order to define realistic traffic load models and to make realistic predictions for future flow
effects, high quality information concerning the traffic flow on a bridge is required. The most
appropriate method for long-span bridges is the application of Weigh-in-Motion (WIM)
technology, Hayrapetova, 2007. Weigh-in-motion technology, Moses, 1979, paved the way
for the use of precise measured traffic streams for the modelling of bridge loading. Prior to
this, bridge load modelling involved sampling the traffic population through the use of static
weigh stations as shown by Agarwal and Wolkowicz, 1976, or simply estimating the
properties of traffic. These static weigh stations however, are known to give biased results as
the drivers of overweight trucks often become aware of the weigh stations and avoid them,
Caprani, 2005. The advantage of WIM is the ability to obtain more reliable modelling of the
truck weight distribution as there is no pre-selection of vehicles and therefore, statistical bias
of data is greatly reduced. Hayrapetova, 2007, states that this is crucial for the development
of equivalent uniformly distributed load for individual lanes on long span bridges. Caprani,
2005, states that WIM technology has given unbiased statistics of traffic characteristics and

therefore allowed for more accurate traffic models to be used for bridge load modelling.

2.3 Simulation of Traffic Loading

Crespo-Minguillon and Casas, 1997 and O’Connor, 2001 note that there are 3 main types of
traffic models for bridge load effect. These are Theoretical statistical models, Static Traffic

Configurations and Simulation of real traffic flow and are described in further detail below.




2.3.1 Theoretical statistical models

Caprani, 2005 states that stochastic process theory and distributions representing traffic
characteristics are used in statistical convolution to determine the distribution of traffic loads
that result. O’Connor et al, 2002; Fu and Hag-Elsafi, 1995, Ghosn and Moses, 1985;
Ditlevsen, 1994, and Ditlevsen and Madsen, 1994 are examples. Theoretical statistical

models are not of relevance to this particular study and therefore are not researched further.

2.3.2 Static Traffic Configurations

This model uses measured (or estimated) traffic data which is obtained from static weight
stations and is used to calculate the resulting load effects on a bridge. Caprani, 2005, has
noted that variation in the traffic stream is not allowed; therefore the quantity of traffic used
is of major importance. This represents a significant drawback to this approach. Static traffic

configurations are not relevant to this study and therefore are not considered further.

2.3.3 Simulation of real traffic flow

This model is of significant interest to this work and involves using measured traffic data
from WIM technology as the basis for statistical distribution of traffic characteristics. Monte—
Carlo simulation is used to generate artificial, yet representative traffic which is then used to
calculate load effects on bridges. This model allows for unobserved traffic to be modelled
accurately so as it represents measured traffic, therefore allowing greater volumes of traffic
loading to be simulated. O ’Connor, 2001, Nowak, 1993 and Crespo-Minguillon and Casas,

1997, identifies problems with the load effects that result when this process is not undertaken.

It is this simulation of real traffic flow that is of particular importance to this study. By basing
traffic models, defined by statistical distributions for each of the traffic characteristics, on a
set of measured traffic, the traffic model can be claimed to represent real traffic, Caprani,
2005. There are a number of different real traffic load models that have been developed

previously and they are outlined below.

2.3.3.1 Bailey, 1996

Bailey, 1996, developed a detailed statistical traffic load model for medium to long length
bridges and allows for different types of traffic flow. Bailey’s model is based on WIM data
taken from various sites across Switzerland. The traffic is made up of 14 different types of

vehicle which make up 99% of all Swiss truck traffic. The frequency of each vehicle type is




observed and used in the simulations. Bailey considers axle groups as having a single weight,

and assumes that the weight is evenly distributed between closely spaced axles. A generalized

bi-modal beta distribution is used to fit the observed axle group weights, as shown below in

Figure 2-1. Correlation of this weight with the GVW is allowed for, through generation of the

other axle weights based on the axle group weight. The geometries of the vehicles are

modelled by a beta distribution for each of the axle spacings and overhangs of each type of

truck.
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Figure 2-1: Axle-group weight distribution, Bailey, 1996

2.3.3.2 Crespo-Minguillén and Casas, 1997

Crespo-Minguillon and Casas’ generation of traffic and their modelling of each of the traffic

characteristics, are outlined in the sequence below:

The annual mean daily flow is selected for the site under analysis.

Calibration curves for the traffic flow during the day of the week and the hourly
variation are then used as shown in Figure 2-2.

A binomial decision making process is then used to determine whether the traffic

state will be jammed or free-flowing, the parameters of this process are not given




Weekly ADT

by the authors, yet they are stated to be dependent on the hour. Therefore the
increased probability of traffic jams occurring during rush hour is taken into
account.

e Given the state of the traffic and its flow, the traffic density can then be

determined from measured flow-density curves shown in Figure 2-3.
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Figure 2-2: Calibration curves for traffic flow, Crespo-Minguillon and Casas, 1997
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Figure 2-3: Flow-Density curves for traffic condition, Crespo-Minguillén and Casas, 1997

The traffic compositions are taken from measured WIM data at the site. The
vehicle type, for the next vehicle arriving on the bridge, is calculated using a
Markov-chain method, with transition matrices based on those of the measured
WIM data.

The velocities are then allocated to each vehicle based on a normalised velocity
function which can then be related to the flow-density graph for the current flow
condition.

Headway is assigned using the normalised headway model. Different such models
are specified for different forms of driver behaviour, vehicle weights and lanes.
Weights and geometries are then allocated to each vehicle. Axle weights and
Gross Vehicle Weight (GVW) are allocated based on measured correlations as
shown in Table 1, between GVW and axle weights. Geometries are based on
measured correlation coefficients for axle spacings. The GVW and axle weight
distributions are defined numerically from measured cumulative distribution
functions derived from the histograms of Figure 2-4. In running this model across
a bridge, the authors allow for interaction between the vehicles; i.e. overtaking

events and changes in speed are modelled.




Correlation matrix of weights for vehicles type 8. W. = axle weight i; W; = gross weight

W, W, W, We
W, 1.00 0.40 ~0.74 ~0.04
W, 0.40 1.00 ~0.89 0.11
W, ~0.74 ~0.89 1.00 ~0.02
W, -0.04 0.1 ~0.02 1.00

Table 1: Correlation values between axle weights and GVW, Crespo-Minguillon and Casas, 1997
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Figure 2-4: GVW histograms for 2 vehicle types, Crespo-Minguillén and Casas, 1997

2.3.3.3 Grave, 2001

Grave, 2001, also develops a comprehensive traffic load model for use on short to medium
length bridges. Most of the traffic characteristics have been modelled statistically by Grave.
Only traffic composition percentages and flow rates are deterministic. The headway model
used by Grave is the same as that of Crespo-Minguillon and Casas, 1997. The number of
vehicle types is more limited than that of the other studies mentioned. Grave points out that

the added complexity is not required for the WIM data under study.

2.3.3.4 Treiber, Hennecke, Helbing, 2000

The Intelligent-Driver Model (IDM) was developed by Treiber, Hennecke, Helbing, 2000, to
simulate the longitudinal dynamics, i.e. accelerations and braking decelerations of the drivers.
Treiber explains that the IDM is a “car-following model”. That is, the traffic state at a given
time is characterised by the positions, velocities and the lane index of all vehicles. The

decision of any driver to accelerate or to brake depends only on his own velocity and on the




vehicle immediately in front of him, while lane changing decisions depend on all the

surrounding vehicles.
The IDM has seven intuitive parameters:

e Desired velocity on a free road (vy)

e Desired safe time headway when following other vehicles (7)

e Maximum acceleration (@)

e Comfortable braking deceleration (b)

e Minimum bumper to bumper distance to the vehicle in front when stopped (sg)
e Elastic jam distance to the vehicle in front (s;)

e Acceleration exponent (d,)

According to Treiber, Hennecke, Helbing, 2000, the applied IDM belongs to the class of
deterministic follow-the-leader models like the optimal-velocity model of Bando et al, 1995,

but it has the following advantages:

e It behaves as if accident-free because of the dependence on the relative velocity,

e All model parameters have a reasonable interpretation, are known to be relevant, are
empirically measurable, and have the expected order of magnitude.

e The fundamental diagram and the stability properties of the model can be easily (and
separately) calibrated to empirical data,

e It allows for a fast numerical simulation, and

e An equivalent macroscopic version of the model is known, which is not the case for

most other microscopic traffic models.

2.3.3.5 Kesting, Treiber, Helbing, 2007

Kesting, Treiber, Helbing, 2007, developed a general model minimizing overall braking
induced by lane change (MOBIL), to derive lane-changing rules for discretionary and
mandatory lane changes for a wide class of car-following models. Both the utility of a given
lane and the risk associated with lane changes are determined in terms of longitudinal
accelerations calculated with microscopic traffic models, i.e. the IDM in this work. This
determination allows for the formulation of compact and general safety and incentive criteria
for both symmetric and asymmetric passing rules. Although the safety criterion prevents

critical lane changes and collisions, the incentive criterion takes into account the advantages




and disadvantages of other driver associated with a lane change via the “politeness factor
(P)”. The politeness factor allows for the variation of the motivation for lane changing from
purely egoistic to more co-operative or polite driving behaviour. This means that lane
changes that obstruct other drivers can be prevented and also that an aggressive driver can

induce a lane change in order to no longer be obstructed.
The MOBIL model has 3 intuitive parameters:

e Lane change politeness factor (P)

e Outside lane bias factor (Jpias)

e Lane change threshold (ds)

The MOBIL model allows lane changes to take place, if

a) The potential new target lane is more attractive, i.e., the "incentive criterion” is
satisfied, and

b) The change can be performed safely, i.e., the "safety criterion” is satisfied.

In the MOBIL model, both criteria are based on the accelerations on the old lane and on the

prospective new lane, as calculated with the IDM.

2.3.3.6 Caprani et al, 2008

Caprani et al, 2008 developed EvolveTraffic, a traffic micosimulation model for bridge
loading using Treiber et al’s IDM and MOBIL models. Caprani expands the capabilities of
the IDM and MOBIL models by allowing the use of probabilistic IDM parameters as opposed
to deterministic IDM parameters as used in all of Treiber’s work to date. This enables each
vehicle within each vehicle class to have slightly different IDM parameters distributed
according to 7 different distributions. The supported distributions, with parameters and some

comments are listed below:

e Exponential: Location and Scale parameters — may be useful for some parameters
such as Safe Time Headway. Not suitable for most parameters, for example, Desired
Velocity (vy).

e Log-Normal: Location and Scale parameters — used in this work.

e Gamma: Location and Scale parameters.




e Gumbel: Location and Scale parameters.

e Poisson: Location and Scale parameters — provides a continuous approximation to the
discrete distribution only valid when the location parameter is greater than 10.

e GEV: Location, Scale and Shape parameters — although strictly an extreme value
distribution, its flexibility (due to its 3 parameters) allows many phenomena to be
modelled accurately.

e Normal: Location and Scale — the standard Gaussian distribution of parameters mean
and standard deviation.

e Constant: Location — this is the deterministic option as no random numbers are
generated and the parameter takes the value Location for all vehicles in the class —

used in this work.

The IDM and MOBIL models are used for the microsimulation of traffic in this research
through the use of EvolveTraffic, a traffic micro simulation model for bridge loading,
developed by Caprani et al, at University College Dublin in collaboration with Laboratoire
Central des Ponts et Chausées, France, 2008.
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3 Fundamental Theories

3.1 Characteristic value and Extrapolation

The characteristic value is the value of a random variable that is expected to be exceeded
once in a given return period. For bridge design, it is usual to design the bridge for a return
period of 1,000 years. The probability of exceeding a value (u) is given below in Equation

3-1, where (X) is a random variable and (F'y()) is the distribution function.

P[X >u] =1—F,(u)

Equation 3-1: Probability of exceeding (u)

For a given return period (R), consider (n) repetitions of the sampling period (Tx), from

which (X) was determined, such that:

R
n= —
Tx

Equation 3-2: Repetitions of the sampling period

The probability of the characteristic value (u) being exceeded in (n) repetitions is therefore

given as:

P[X = u in n repetitions] = n(1 — F,(u))
Equation 3-3: Probability of exceeding (u) in (n) repetitions
By definition of a characteristic value, the value is expected to occur at least once in (n)

repetitions; therefore the probability must be equal to unity and Equation 3-3 goes to

Equation 3-4.

11



1=mn(1—r,(u))
1

Equation 3-4

The characteristic value may then be calculated as shown below in Equation 3-5.

(.1
T

Equation 3-5: Characteristic value

For this type of work, it is common to have 50 working weeks in the year with 5 working
days per week. The distribution obtained from the simulations in this work is the maximum

per day. This totals 250 days in a year and 250,000 days in 1000 years, therefore:

Mygons = 250,000
Equation 3-6: Return period

_ 1 _
Uygg0 = Fx © (1 —m) = F,;1(0.999996)

Equation 3-7: Characteristic value

This characteristic value will correspond with a standard extremal variant derived from the

Gumbel distribution as shown below in Equation 3-8.

Gt = In( In (0.999996)
Gt =12.429

Equation 3-8: Characteristic value for Gumbel distribution

12




A sample extrapolation method on Gumbel probability scale is shown below in Figure 3-1.

Sample Extrapolation method :
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Figure 3-1: Sample Extrapolation method
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4 Independent Driver Model

4.1 EvolveTraffic

EvolveTraffic is a traffic microsimulation model for bridge loading and was developed by
Caprani et. al. at the School of Architecture, Landscape and Civil Engineering, University
College Dublin, Ireland in liaison with Laboratoire Central des Ponts et Chausées, France,

2008. EvolveTraffic is the traffic microsimulation model used in this work.

EvolveTraffic simulates traffic behaviour for the purpose of analysing Highway Bridge
loading. Vehicles are read into the program and are simulated driving along a length of road
that can have speed limited features and gradient features. The vehicles interact with each
other and can perform lane changes. When the vehicles pass the output detector, they are
written to the output traffic file. The output traffic file contains the same vehicles as the input
traffic file but in a different configuration. The configuration of the output file depends on the
road and traffic features that the user has specified. It is this configuration of the output traffic
file that is of interest to us as it allows us to obtain traffic data without physically measuring
real traffic, which is both expensive and time consuming. EvolveTraffic considers 5 classes of

vehicle:
Class 0 — Cars: any vehicle under 3.5 tonnes
Class 1 — Small trucks: any vehicle with less than 4 axles and greater than 3.5 tonnes
Class 2 — Large trucks: any vehicle that is not a car, small truck, crane or low-loader

Class 3 — Cranes: any vehicle that is not a car and has a maximum axle spacing of

4.5m and average axle spacing less than 2.5m

Class 4 — Low- Loaders: any vehicle that is not a car and has a maximum axle

spacing not less than 7.5m

The longitudinal model used in EvolveTraffic is the Intelligent Driver model (IDM)
developed by Treiber et al, 2000. The Lane Change model MOBIL (Minimise Overall
Braking decelerations Induced by Lane changes), developed by Kesting, Treiber, Helbing,
2007, controls the lane changes for the car following model, i.e., the IDM. For each particular

class of vehicle, there are 10 parameters to be set for the IDM and MOBIL models.

14



EvolveTraffic allows vehicles within each class to have varying parameters, i.e. EvolveTraffic

allows probabilistic IDM parameters.

4.2 Intelligent driver Model (IDM)

The Intelligent Driver Model (IDM), developed by Treiber, Hennecke, Helbing, 2000, is a car
following model, i.e., the traffic state at any given time is characterised by the positions,
velocities and lane position of all the vehicles. The decision of any driver to accelerate or
decelerate depends not only on his or her velocity but on the velocity of the vehicle directly
in front. However the decision of any driver to change lane depends on all the neighbouring

vehicles.
The IDM has seven intuitive parameters:

e Desired velocity on a free road (vy)

e Desired safe time headway when following other vehicles (7)

e Maximum acceleration (@)

e Comfortable braking deceleration (b)

e Minimum bumper to bumper distance to the vehicle in front when stopped (s)
e FElastic jam distance to the vehicle in front (s;)

e Acceleration exponent (d,)

The acceleration (g) of any given driver at any given time depends on his/her own maximum

acceleration (a), actual velocity (v,), desired velocity (vy), the distance (s,) to the vehicle
directly in front and on the velocity difference or approach rate (Av) to the vehicle in front as

shown in Equation 4-1.

By = 2
v _ @y [P ) M)
dt -il_;]‘ﬂ:" S

Equation 4-1:  Acceleration of driver at any given time

Where:

(e) _ . .
a"® = maximum acceleration
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vy = desired velocity
d, = acceleration exponent
(s) = distance to vehicle directly in front

s (v, Av,) = desired gap

The desired distance to the vehicle directly in front (s*( v, Av_)) is given below in Equation

4-2.
» » 1 . v Av
s (1, A ) = .':E;'ﬂ + Rfﬂ | fz} 4 TlEyy 2 =~
\ vy 24/ gle pla)
Equation 4-2: Desired distance to vehicle directly in front
Where:

s (v, Av,) = desired gap

.
i

Séﬂ:} = minimum distance between congested vehicles

.-.:'1:'1} = elastic distance between congested vehicles

v, = actual velocity

vé“} = desired velocity

T ‘=) = safe time headway

Av_ = velocity difference between own vehicle (a) and vehicle immediately in front
a'® = maximum acceleration

b'®) = comfortable deceleration

4.3 MOBIL model

The Lane Change model MOBIL (Minimise Overall Braking decelerations Induced by Lane
changes) developed by Kesting, Treiber, Helbing, 2007, controls the lane changes for the car
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following model, i.e., the IDM. Both the utility of a given lane and the risk associated with
lane changes are determined in terms of longitudinal accelerations calculated with the IDM.
This determination allows for the formulation of compact and general safety and incentive
criteria for both symmetric and asymmetric passing rules. Although the safety criterion
prevents critical lane changes and collisions, the incentive criterion takes into account the
advantages and disadvantages of other drivers associated with a lane change via the
politeness factor (P). The politeness factor allows for the variation of the motivation for lane
changing from purely egoistic to more co-operative or polite driving behaviour. This means
that lane changes that obstruct other drivers can be prevented and also that an aggressive

driver can induce a lane change in order to no longer be obstructed.
The MOBIL model has three intuitive parameters:

e Lane change politeness factor (P)

e QOutside lane bias factor (Jp;4s)

e Lane change threshold (J.,)

The MOBIL model allows lane changes to take place, if

¢) The potential new target lane is more attractive, i.e., the "incentive criterion” is
satisfied, and

d) The change can be performed safely, i.e., the "safety criterion” is satisfied.

In the MOBIL model, both criteria are based on the accelerations on the old lane and on the

prospective new lane, as calculated with the IDM.

4.3.1 The safety criterion

The safety criterion is satisfied, if the IDM braking deceleration (acc’) imposed on the back
vehicle (B”) of the target lane after a possible change does not exceed a certain limit (by4r),

this means, the safety criterion as shown below in Equation 4-3 is satisfied.
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acc' (B') = — bsafe

Equation 4-3: The Safety Criterion

Where:

B’ = the back vehicle on the target lane
acc' = the acceleration after the possible lane change

bsafe = limited value for brake deceleration

4.3.2 The incentive criterion

For the incentive criterion, the drivers own advantage on the target lane, measured by the
increased acceleration or reduced braking deceleration, is weighted against the disadvantage
imposed to other drivers, measured by the decrease acceleration or increased braking
deceleration for these drivers. Since drivers tend to be selfish, the disadvantage imposed on
other drivers is weighted with a Politeness factor (P) whose values are typically less than 1,
resulting in the following incentive criterion. An outside lane bias factor (dp,s) is introduced
for European traffic which has asymmetric passing rules, and is included in the equation. The
right lane is taken as the default lane and the left lane is the passing lane, i.e., a “keep right”
directive is implemented by the outside lane bias factor (J5;,5). The incentive criterion for lane

changes from “right to left” is given in Equation 4-4 below.

acc'(M") — acc (M) + P [acc'(B") — acc (B")]] = Othr + &bias

Equation 4-4: Incentive Criterion - Right to Left

The incentive criterion for lane changes from “left to right” is given in Equation 4-5 below.
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acc' (M’) — acc (M) + P [acc' (B) — acc (B)] = Jthr — dbias

Equation 4-5: Incentive Criterion — Left to Right

Where:

acc = the actual IDM acceleration

acc’ = the acceleration after the possible lane change

M =“Me” i.e., the driver changing lane, before the possible lane change
M’ = “Me” after the possible lane change

B = the back or following vehicle on the old lane

B’ = the back or following vehicle on the target lane

O = Lane change threshold

Opias = Outside lane bias

The first part of the equation [acc’ (M”) - acc (M)] relates to the drivers own
advantage as a result of the possible lane change. The second part of the equation /acc’ (B’) -
acc (B’)] or [acc’ (B) - acc (B)], is the disadvantage to the vehicle following directly behind
as a result of the possible lane change. The disadvantage to the following vehicles is then
multiplied by the Politeness factor (P). The politeness factor (P) determines to which degree
these vehicles affect the lane changing decision and allows lane changes to take place in
congested traffic. Instead of simply modelling purely selfish behaviour, the MOBIL
parameter (P) can be changed so as to model driver behaviour ranging from very courteous
behaviour (P=1) to malicious behaviour (P<0). When P = 0-0.5, realistic driver behaviour is
modelled, i.e., the advantages of other drivers have a lower priority than that of the drivers
own, but they are not neglected. When P=0, purely selfish behaviour is modelled but the
safety criterion is still satisfied. When P<0, malicious behaviour is modelled. The safety
criterion is still satisfied but malicious drivers thwart and cause disadvantage to others, even
at the cost of their own advantage. The right hand side of the equation consists of the Lane
Change Threshold (d,,,) and the Outside Lane Bias factor (dpi,s). It can be clearly seen from
the “left to right” incentive criterion equation that even though (0p;,s) is small, it must be

greater than (J4,); otherwise the Lane Changing Threshold would prevent changes to the
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right-hand lane even on an empty road. The Lane Changing Threshold is included in order to
stop lane changes that are only marginally more advantageous than not changing lane. This
prevents lots of pointless lane hopping. It should also be noted that the Lane Change
Threshold (64, and the Outside Lane Bias factor (dp,s) influences the lane changing
behaviour globally whereas the Politeness factor (P) affects the lane changing behaviour

depending on the disadvantage of the involved vehicles.

5 Data Acquisition and Processing

5.1 Input Traffic

The input traffic is generated using GenerateTraffic, a program created by Caprani, 2005.
GenerateTraffic uses Monte-Carlo simulation to generate a traffic file whose statistical
distributions are the same as the input distributions. GenerateTraffic allows the user to
generate synthetic traffic using measured traffic data from various sites across Europe. The
user can choose the number of days of traffic required, the number of lanes and directions of
traffic required, the percentage of cars in the traffic, which site traffic flow data to be used
and which site traffic weight data to be used. The traffic flow data and weight data can also

be selected separately from different sites in order to obtain different traffic configurations.

For this work, I required a large flow of heavy traffic. I used the traffic flow data
coupled with the traffic weight data from the Auxerre WIM site in France as analysed by
Grave, 2001, in order to represent real measured traffic. After some trial runs with different
amounts of days of traffic, I chose to generate 28 days of traffic using GenerateTraffic as on
average it took 45 minutes to analyse in EvolveTraffic on my laptop. For this work, I was

looking for the daily maximum moment in the bridge and therefore needed the daily
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B\ TFGin.txt - Notepad
File Edit Format Miew Help

i
A4 START OF TRAFFIC FLOW GEMERATOR INPUT

S Mame of output file

B5cars_20day.txt

S4 Distance for which overlaps are prevented (m):
300

SS No. of days of traffic required:

20

S site flow data to be used:

?/ Site weight data to be used:

i/ vehicle buffer size

10000

A5 mMo Tanes dn direction 1

%/ Mo lanes in direction 2

3/ Mominal congested spacing, fromt to back ¢m):
;/ Congested speed (km/sh):

%ﬁ gongested gaps coefficient of wariation:

S/ Headway model to be used:
SO0 - Auxerre NHM, 5 - Congestion (w/ or wlout cars), 6 - free-flow, cars included)
5

A4 Proportion of cars (less than 1.0) - only used if Headway Model 4s 5 or &
0,85

S/ END OF TRAFFIC FLOW GEMERATOR IRNPUT

Ln1, Coll

maximum amount of traffic, i.e. rush hour traffic. I assumed 4 hours of rush hour traffic in a
day, 2 hours in the morning and 2 hours in the evening. This meant that for every 24 hours of
traffic simulated, I simulated 6 days worth of rush hour traffic. In total, this amounted to 168
days of rush hour traffic for each Traffic Input file. The Traffic Input file has the same format
as the Traffic Output file as shown in Figure 5-4 below. 168 days of traffic proved to be good
mix between computation time and quantity of results. Hayrapetova, 2007, from her study of
the Moerdijk link on the A16 highway in the Netherlands, stated that the average percentage
of HGVs was 12.1% and peaked at 13.4% during rush hour times. I decided upon a 15%
HGYV content which is equal to 85% car content in order to model a high percentage of heavy
goods vehicles (HGVs) in realistic rush hour traffic. I opted for a single direction input traffic
file to save on unnecessary computation time and decided on a single lane configuration so
that all the vehicles would be positioned in the outside lane at the start of the simulation
process and that any lane changes would occur during simulation. The GenerateTraffic input

file that was used for the synthetic traffic generation is shown below in Figure 5-1.

Figure 5-1: GenerateTraffic input file
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5.2 Road Configuration

For this work I required the traffic to become congested. Therefore I decided on a road
configuration that consists of a 3000m long, 2 lane, single direction road with a 10km/hr
speed limit section between 2000m and 3000m. Two lanes were chosen to allow lane changes
to take place. The road is in one direction to minimise unnecessary computation. The distance
of 2000m before the speed limit section was chosen in order to allow the traffic to interact
with each other and to allow lane changes to take place as the traffic approached the speed
limit section. 10km/hr is the lowest speed limit that EvolveTraffic allows and was chosen to
force the traffic to become congested. The Output detector is at 2200m along with the Flow-
Density detector and Headway detector as shown in Figure 5-2. The Lane Change detector
writes the number of lane changes per 60 second time step per 200m intervals to the lane

change output files.

ET +50% S1.etr - EvolveTraffic

File Configuration Rum Tools  View Help

D=EE & & 9l 9 el > %

Sim. Time - Day: 0-0:00:00.00 MW Car Output Detector j
Real Time - Day: 0- 0:00:00.00 MW Small Truck Flow-Density Detector
Bl Large Truck — Headway Detector 9%
Crane — Composition Detector
B lLowloader LC Lane Change Detector

e

0m 500 m 1000 m 1500 m 2000 m 2500 m 3000

Output Detector

H
|« >

Ready

Figure 5-2: EvolveTraffic road configuration

Each vehicle is read from the generated traffic input file and enters the road at Om. The
vehicles then proceed along the road, interacting with the neighbouring vehicles and the road
features until it reaches the end of the length of road. When each vehicle reaches the Output
Detector, it is written to the traffic output file along with the time of arrival at the Output

Detector.
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As the traffic approaches the speed limit section, the vehicles decelerate down from their old
desired velocity to their new desired velocity which is dictated by the speed limit of 10km/hr.
Subsequent vehicles decelerate and bunch up behind the lead vehicle by reducing the distance

between vehicles because of the lower speed limit as shown in Figure 5-3.

&l Stock Configuration.etr - Evolve Traffic

File Configuration Run  Tools  Wiew Help

Ded & Bl . L 2o o | 2| ]

m o

JFercent Complete 0% SCRL

Figure 5-3: Traffic entering speed limit section in EvolveTraffic

5.3 EvolveTraffic Output

EvolveTraffic writes the traffic to the Traffic Output file when the traffic reaches to Output
Detector. This Traffic Output File contains the same vehicle data eg. weight, length, number
of axles, axle weights etc., as the Traffic Input file but in a different configuration due to the
microsimulation of the traffic along the length of road. The Traffic Output file does not
include cars so as to minimise file size and further unnecessary analysis. Because the cars are
not heavy enough to significantly affect the load on the bridge, they are excluded in the
analysis of the bridge bending moment. Cars are still a very important aspect of traffic
microsimulation. Even though they do not contribute significantly to the overall load on the
bridge directly, they do act as spacers between HGVs which has a huge effect on the

maximum load on the bridge. Therefore cars must be included in traffic microsimulation to
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determine the distance between HGVs. A typical Traffic Output File is shown below in
Figure 5-4.

e 85cars_20dayout. txt - Notepad Q@gl

File Edit Format Wiew Help

1001 11 5 O 252 4 27 411114511 10 653212655 7114 7113 71 0 O O OO0 00 O ~
1001 1 1 5 O 358595 25 282 7od411 10 5828 8530 5918 500 00 OO0 OO0 00 O
1001 11 5 O 43373 24 422107412 10 a85314596110313103 0 00 00 00 00 O
1001 11 5 O 7 277 27 343114512 10 A53610754 5712 5712 57 0 00 OO 00 O
1001 11 5 O 91240 25 5061053512 10 793214047 9313 5313 93 ¢ 00 OO0 00 O
1001 11 5 O 93754 24 130 68211 1o 4768 01 0 o0 OO0 OO0 OO0 OO0 00 O
1001 11 5 O 94044 25 378105412 10 g02812361 9815 S8 0 00 OO0 OO0 00 O
1001 1 1 5 O 93852 24 350107512 10 745210851 5711 5712 57 0 OO0 OO0 00 O
1001 11 5 011 456 21 158 6R211 10 4566 93 0 00 00 OO0 OO0 00O 00 O
1001 1 1 5 013 975 26 475110512 10 712913558 9010 9012 S0 0 OO OO OO O
1001 1 1 5 0162537 23 150 47211 10 4747103 0 00 00 OO0 OO0 OO0 00 0O
1001 11 5 017 229 24 155105412 10 3151 8861 3913 300 00 00 00 00 0O
1001 11 5 0181245 23 50 50212 10 3150 3% 0 o0 00 OO0 OO0 OO0 00 O
1001 1 1 5 01593035 25 352106412 10 573113864 9911 9 0 00 OO0 OO0 00 O
1001 1 1 5 02028597 25 331113412 10 5833115968 7712 7/ 0 00 OO0 OO0 00 O
1001 1 1 5 021 633 25 418113512 10 623412855 v§l2 7gl2 76 0 O O OO 00 O
1001 1 1 5 0215577 24 383108411 10 683212668 9810 S5 0 0 0 00 00 00 O
1001 1 1 5 025 751 23 336110411 10 6733 9763 8al4 86 0 00 00 00 00 O
1001 1 1 5 0234160 24 420104512 10 683213948 v411 7413 74 0 00 00 00 O
1001 1 1 5 02553365 27 476117512 10 733415654 8214 8215 82 ¢ OO0 OO0 00 O
1001 1 1 5 026 827 27 156 63212 10 4763105 0 0 0 00 00 00 00 00 0O
1001 1 1 5% 0262732 26 152 61212 10 5961122 0 00 00 00 00 00 00 O
1001 1 1 5 02650%4 25 188 50212 10 5850120 0 OO0 OO0 OO0 OO OO 00 O
1001 1 1 5% 0271531 27 125 52212 10 3852 85 0 00 OO0 OO OO OO OO O
1001 1 1 5 0272447 24 456107411 10 72331446112013120 0 0 0 OO0 OO0 00 O s

Ln1, Caol 1

Figure 5-4: Typical Traffic Output File

5.4 Bridge bending moment analysis

For this work I am analysing the sensitivity of the IDM parameters on congested traffic on
long span bridges. Caprani, 2005, has previously examining the effect of micro simulation of
traffic on short to medium span bridges, i.e. 20m to 50m. For long span bridges the governing
loadcase is congested traffic, i.e. the greatest static load on the bridge. I decided to use a
100m single span, simply supported, 2 lane, single direction bridge for this work. The
maximum moment is calculated at mid-span with a lane factor of 1, i.e. the two lanes load the
bridge equally. The Traffic Output file is analysed using a program developed by Caprani,
2005, called MarchTraffic. The influence line for a single span bridge is Load Effect 1 in
MarchTraffic. This helped simplify the analysis of the results.

MarchTraffic simulates the effect of the traffic file crossing the bridge and produces, for each
effect, a block maxima value. To save on unnecessary processing time, only Significant
Crossing Events (SCEs) are processed. These are defined as any Multiple Truck Presence

Event (MTPE) or the occurrence of any truck with Gross Vehicle Weight (GVW) of over 40
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tonnes. When a SCE is found, the trucks involved are passed to an algorithm that uses the
required influence line to calculate the induced load effect. The trucks are passed across the
bridge in 0.02 second steps (less than 0.05m for a speed of 8km/hr as used in this work). The
load effect is calculated at each step and the maximum value of each load effect is kept for
further analysis along with the time it occurs at and the position of the front axle of the first

truck on the bridge. A typical MarchTraffic input file is shown below in Figure 5-5.

B MTin.txt - Notepad E]@

File Edit Format Wiew Help

>> START OF MARCHTRAFFIC OPTIONS -~
=» Input Tile:

BSicars_stock-output.txt

=> Mo of spans:

1

>» Span lengths (each followed by a commmal:

100,

=» Analyse load effects from LEL to LET:

1

>> Block size for maxima (days):
0

+» Block size for maxima (seconds):

14400

== write Tull time history - slow & large file {1 or 0):
4]

>» write each loading event walue (1 or 0J:

0

>> Time step for passing trucks owver (secs):

0.10

=» Skip time steps when there is no loading ¢1 or 0):
il

=> END OF OPTIONS

Lm 11, Cal 2

Figure 5-5: Typical MarchTraffic input file
A typical MarchTraffic output file for a 5 truck event is shown below in Figure 5-6. Line 2 of
the MarchTraffic output file below is the load effect information line. The format is Load
Effect ID, Value, Time, Distance, Number of Trucks. Lines 3-7 contain the full truck

information from the Traffic Output file for all the trucks involved in the event.
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I Span_1.e+002_ABS_5.txt - Notepad
File Edit Format WYiew Help

12548 7 22 54 55211 10 1855 36 0 00 00 0O
1255879 24 71 56212 10 2556 46 0 00 0 0 0O

]

1 5158.9 109,23 5
125 920 22 313106511 10 3431 9749 5413 5413 54

1 ~
1 15393.8 5158.9 109,23 5
1001 1 1 5 125 920 22 3131046511 10 5431 9749 5413 5413 54 0 0 0 00 00 00
1001 1 1 5 1252551 22 173106411 10 3631 5763 4012 40 0 00 00 00 00 00
1001 1 1 5 1253533 25 527107512 10 8134126451071510714107 ¢ 0 0 0 0 0 0 00
1001 1 1 5 12548 7 22 54 55211 10 1855 36 0 00 OO0 0O OOC OO OO 00
1001 1 1 5 1255879 24 71 56212 10 2556 46 0 00 00 00 OO0 OO0 00 00
2 1843.8 515%9.5 110,55
1001 1 1 5 125 920 22 313105511 10 5431 9749 5413 5413 54 0 00 00 00 00
1001 1 1 5 1252551 22 1731056411 10 3631 5763 4012 40 0 00 OO0 00 00 00
1001 1 1 5 1253533 25 527107512 10 8134126451071510714107 0 0 0 00 0 0 00
1001 1 1 5 12548 7 22 54 55211 10 1855 26 0 O 0Q OO0 OO0 OOC OO OOQ 00
1001 1 1 5 1255879 24 71 56212 10 2556 46 0 00 00 00 OO0 OO0 OO0 00
3 S01.6 5158.9 109,23 5
1001 1 1 5 125 920 22 3131046511 10 5431 9749 5413 5413 54 0 0 0 00 00 00
1001 1 1 5 1252551 22 173106411 10 3631 5763 4012 40 0 00 OO0 00 00O 00
1001 1 1 5 1253533 25 527107512 10 8134126451071510714107 0 O 0 0 0 00 00
1001 1 1 5 12548 7 22 54 55211 10 1855 356 0 o0 00 00 OO0 00 00
1001 1 1 5 1255879 24 71 56212 10 2556 46 0 00 00 00 OO0 OO0 OO0 00
4 369.5 5158.9 109,23 5
1001 1 1 5 125 920 22 313105511 10 5431 9749 5413 5413 54 0 00 00O 00 00
1001 1 1 5 1252551 22 173106411 10 3631 5763 4012 40 0 00 OO0 00 00 00
1001 1 1 5 1253533 25 527107512 10 8134126451071510714107 0 o 0 ¢ 0 O 0 00
115 0 00 00 00
115 o 00 00 00
1559,
115 o o0 00 020

Lm i, <ol 1

Figure 5-6: Typical MarchTraffic output file for a 5 truck event

5.5 Processing of Results

I have compiled nearly 100GB of results from nearly 300 hours of traffic microsimulation
during this work so finding an efficient way to process these results was crucial. The output
files from MarchTraffic and EvolveTraffic are in .txt and .csv format, both of which are easily
transferable into Microsoft Excel, which I used throughout this work. I developed Excel
spreadsheets to sort and compile the relevant data from the output files but even still, the

analysis of results proved to be a very tedious process.
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6 Analysis of Results

6.1 Layout of analysis

Firstly I ran the traffic Input file with a base set of Independent Driver Model (IDM)
parameters to get a base result for the characteristic moment for a 1000 year return period for
the bridge. Because EvolveTraffic allows probabilistic IDM parameters i.e. each parameter
can be distributed according to a number of different distributions, running the exact same
settings twice will result in slightly different results. EvolveTraffic also allows for the IDM
parameters to be set constant across each vehicle class. In an attempt to combat this, |
repeated the base simulation 10 times and averaged the results to give a better estimate of the

characteristic moment value.

6.2 Base IDM parameter values

In order to be able to conduct a sensitivity analysis on the IDM parameters, I first needed to
have a base from which I could compare future results. Each of the 5 vehicle classes can have
different IDM parameter values. In order to simplify matters, I set Cars and Small Trucks to
have the same parameter values and Large Trucks, Cranes and Low-loaders to all have the
same parameter values. The parameters 7, a, b, s0, sI and v(0 are distributed across a normal
distribution, while the parameters d,, P, dpiss and dy, are set constant across each vehicle class.

The Location value is the mean and the Scale value is the standard deviation. The base values
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for Cars and Small Trucks are shown in Figure 6-1, while the base values for Large Trucks,

Cranes and Low-Loaders are shown in Figure 6-2.

IDM Traffic Model Configuration fg|
|IDM Parameters for Yehicle Class <« Copy from << | ﬂ
Distribukion | Location | Scale | Shape
Safe time headway, T (s) Mormnal ﬂ 1.20 0.05 0.00
Maxinumn acceleration, a (m)'s™2) Mormnal ﬂ 1.00 0.05 0.00
Comfortable decceleration, b (m/s™2) Mormnal ﬂ 2.00 0.10 0.00
Mimirmurn jam distance, S0 (m) Mormnal ﬂ 1.00 0.05 0.00
Elastic jam distance, s1 {m) Mormnal ﬂ 10.00 0.70 0.00
Desired velocity, w0 (km/h) Mormnal ﬂ 120.00 7.00 0.00
Acceleration exponent, delka Constant ﬂ 4,00 0.00 0.00
Lane change politeness Factor, p Constant ﬂ 0.20 0.00 0.00
Cutside lane bias Fackor, delkasbias Constant ﬂ 1.00 0.00 0,00
Lane change threshald, deltasth (mfs™~2) Constant ﬂ 0.30 0.00 0.00
Ok | Cancel

Figure 6-1: Base IDM parameter values for Cars

IDM Traffic Model Configuration E|
100 Parameters for Yehicle Class  |[BE - Large Truck << Copy from << | j
Diskribution | Location | Scale | shape
Safe time headway, T (s) Mormal ﬂ 1.50 0.05 0.00
Maximum acceleration, a {mis™~2) Mormal ﬂ 1.00 0.05 0.00
Zomfortable decceleration, b (mis~2) Mormal ﬂ 2,00 0.10 0.00
Mlinimum jam diskance, s0 {m) Mormal ﬂ 1.00 0.05 0.00
Elastic jam distance, s1 {m) Mormal ﬂ 20.00 070 0.00
Desired velocity, w0 (kmih) Mormal ﬂ 80.00 2.00 0.00
Acceleration exponent, delta Constank ﬂ 4.00 0.00 0.00
Lane change politeness fackor, p Constank ﬂ 0.20 0.00 0.00
Qutside lane bias Factor, deltasbias Constant ﬂ z.00 0.00 0.00
Lane change threshold, deltadth (m/s~2) Constank ﬂ 0.30 0.00 0.00

ak. | Cancel |

Figure 6-2: Base IDM parameter values for Large Trucks
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6.3 Max Moment per Day

After running the base model 10 times I compiled the results in Microsoft Excel and plotted
the relevant graphs. A portion of the Max Moment per Day (MMPD) graph is shown below
in Figure 6-3. It can be clearly seen in Figure 6-3 that the probabilistic nature of the traffic
simulation in EvolveTraffic and the fluctuation in the normally distributed parameters can
lead to quite different max moment per day values for the same time period in each

simulation, up to 17% in some cases.

Max Moment per Day - All 10 Simulations

35000
£ 30000
»
* 25000 A—!
E \'/ f ""\ “/ /& W AT ‘H';cv »kﬁ} [r\/\—-
§ 20000 VL %{i _? Q‘ X

15000

50 55 60 65 70 75 80 85 90 95 100

Day

Figure 6-3: Max Moment per Day Graph for all 10 Simulations of Normal Distribution Base Model

The Average MMPD graph is plotted below in Figure 6-4. This shows that the average max
moment per day fluctuates between 20000KNm and 25000KNm with the highest peaks
reaching up to 27000KNm.
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566 Average Max Moment per Day
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Figure 6-4: Average Max Moment per Day of Normal Distribution Base Model

Due to the high degree of variance of the MMPD values between each simulation, I decided
to simulate the Base Model with all the IDM parameters set constant across each vehicle
class to see what difference, if any, the fluctuations of the IDM parameters due to the normal
distribution makes to the MMPD values. I found that, when the IDM parameters are set to
constant values across each vehicle class, there is no change in the MMPD graph for each
subsequent simulation. This means that the variance in the MMPD values in Figure 6-3 are
caused by the distribution of the IDM values across a normal distribution. The MMPD of the
Base Model with constant IDM parameter values versus the average MMPD with IDM
values distributed across a normal distribution are shown below in Figure 6-5. The blue line
is from the constant IDM values model and the red line is from the normally distributed IDM

values model.
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Max Moment per Day - Constant vs. Normal Dist. IDM parameters
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Figure 6-5: Max Moment per Day — Constant vs. Normal Distribution IDM parameters

The maximum moment of all 10 normal distribution simulations of the base model is
30251KNm from a 5-truck load event. 6-truck and 7-truck load events did occur but did not
govern due to lesser amount taking place compared to 5-truck events. 22% of the total load
events were S-truck load events, 3% were 6-truck load events and 0.2% were 7-truck load
events. The truck configuration of the max moment load event on the bridge is shown below
in Figure 6-6. The trucks are shown in blue. The bridge is 100m long and is shown in grey.
The weights of the trucks are labelled on the trucks and are given in tonnes (t) eg. 53.4t and

the distances are given in metres.

Truck Configuration on bridge for Max Moment of 30251ENm

22,6

Figure 6-6: Truck Configuration on bridge for Base Model Max Moment of 30251KNm
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As can be seen above in Figure 6-6, the average headway distance is 27m. The trucks are
travelling at a speed of 2.2m/s, this relates to a headway time of 12 seconds which is greatly
removed from the Safe Time Headway (7) of 1.5 seconds set for the simulation. This is due

to the equation for the desired distance to the vehicle directly in front (s*( v, Aw,_)) as shown

below in Equation 4-2. The headway distance of 27m between vehicles is due to the large
value of 20m for the elastic distance between congested vehicles (s;) with respect to the
minimum distance between congested vehicles (sy), (1-3m), and the safe time headway (7),

(1-2secs). In Equation 4-2 below, it can be seen that (s;) outweighs (sy) and (7) considerably.

i p | U v Aw
s*(v,, Av,) = st','ﬂ + sf} | i} + T + —%
1.‘l LD E\'l o b

Equation 4-2: Desired distance to vehicle directly in front

6.4 Extrapolation

In order to find the characteristic moment value for the Base Model, I plotted the standard
extremal variate of the Gumbel distribution versus the maximum moment per day. I fitted a
trendline to the top 30% of the data and extrapolated up to the return period value of 12.429

to find the characteristic max moment value.

Firstly I plotted the 10 simulations with normally distributed IDM parameters and noticed the
variability between each plot. This can clearly be seen in Figure 6-7 below. In order to
compare this variation of the characteristic value with future parameter changes, I calculated
the standard deviation of the 10 characteristic values and plotted + and - 1 standard deviation

on Figure 6-7.
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Figure 6-7: Base Model Normally Distributed IDM values x10

Seen as I am only using the top 30% of the data, which represents only 50 data points, to
extrapolate to find the characteristic value, I choose to simulate 1680 days of data and plot it
versus the average of the 168 days of data plotted above in Figure 6-7. The top 30% of the
1680 days data contains 500 data points, therefore will provide a relatively more accurate
extrapolation. As can be seen in Figure 6-8, the 168 day average and the 1680 extrapolations
are remarkably similar. The characteristic value of the 1680 day simulation is within 0.5% of
the characteristic value of the average for the 168 simulation. Also plotted on Figure 6-8 is
the 168 simulation with constant IDM parameters. The constant IDM characteristic value is
within 1.6% of the characteristic value of the average for the 168 simulation. Therefore the
average extrapolation of the 10 normally distributed simulations is an accurate approximation

of the characteristic moment on the bridge for the base IDM parameters.
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1680 Days vs. 168 Days
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Figure 6-8: Base Model Extrapolation 1680 Days vs. 168 Days

6.5 Lane Changes and Density

The greatest amounts of lane changes takes place as the vehicles enter the speed limit section.
The simulations with normally distributed IDM parameters have an average lane change rate
(LC) of 2823 LC/hr/km while the simulation with constant IDM parameters has a LC rate of
3037 LC/hr/km. The normally distributed IDM simulation has an average density of 80.20
veh/km while the constant IDM simulation has a density of 76.32 veh/km.

6.6 Number of Trucks in Load Events

As discussed above in Section 6.3, the maximum moment on the bridge was caused by a 5-
Truck load event even though 6-Truck and 7-Truck load events occurred. Figure 6-9 below,
shows each load event type plotted with respect to the standard extremal variate of the
Gumbel distribution for 840 Days of normally distributed simulated traffic. It can be seen
from Figure 6-9, that 1 Truck, 2 Truck, 3 Truck and 4 truck load events have a steep slope

indicating that they will converge at a maximum moment much sooner than 5 Truck and 6
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Truck load events. 1 Truck, 2 Truck, 3 Truck and 4 truck load events have the most data
points, 20% of the total load events each. The 5 Truck load events have nearly as much with
18%. The 6 Truck load events have much less data points, only 2% of the total load events
and this is why a 6 Truck load event does not govern. Only 1 7 Truck load event was
recorded which incidentally has the smallest magnitude of moment recorded. 6 Truck and 7

Truck load events do have the potential to govern but a much greater amount of data must be

simulated.
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Figure 6-9: Type of Multiple Truck Load Events vs. Moment

6.7 Free Flow Model

In order to have a base to compare the congested traffic results to, I simulated the traffic input
file in free flow without the 10km/hr speed limit section and calculated the maximum
moments per day in the bridge, as shown below in Figure 6-10. It can be clearly seen that the

moment is much less than that of congested traffic in Figure 6-4. The maximum moment per
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day varies from 12000KNm to 17000KNm for free flow traffic and from 20000KNm to
27000KNm for congested traffic.

Average Max moment per day - Free Flow
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Figure 6-10: Average Max Moment per Day of Normal Distribution Free Flow Model

The maximum moment on the bridge was caused by a 2-Truck event. Figure 6-11 below,
shows each load event type plotted with respect to the standard extremal variate of the
Gumbel distribution for 1680 Days of normally distributed simulated free flow traffic. A 4
truck load event did not occur. It can clearly be seen that 1-Truck and 2-Truck load events
have a steep slope as in Figure 6-9, and will converge to a maximum moment quickly. This
indicates that the characteristic load will converge quickly. From Figure 6-9, it can be seen

that 2 Truck and 3 truck load events will converge below 30000KNm.
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Type of Load Events vs. Moment - Free flow
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Figure 6-11: Type of Multiple Truck Load Events vs. Moment for Free Flow

Figure 6-12 below show the data points for the 1680 max moment per day free flow
simulation. It can be seen that when the data is extrapolated with a linear trendline for the top
30% of the data, the characteristic value of 33500KNm is quite large and the extrapolation
does not seem to match the trend in the data. I then extrapolated the top 5% of the data, which
matches to final trend of the data. The characteristic value of 27500KNm is more like what is
expected for a maximum of a 3 Truck load event. This is 25% less than the average

characteristic value in Figure 6-7 of the Base Model for congested traffic.
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Standard Extremal Variate
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Figure 6-12: Free Flow Extrapolation 1680 days
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7 Sensitivity Analysis

7.1 Parameters and layout

There are 10 IDM parameters that can be altered to change the configuration of the traffic.
This work focuses on 6 parameters, S; T, Opias, P, S; and oy, because of their relevance to
lane changing and to headway distances. The aim of this work is to find out which parameters
make the most difference to the max moment on the bridge and why. Each parameter is
changed by -50%, -25%, +25% and +50%, while leaving all other parameters at the base

model values.

7.2 8;- Elastic jam distance

Sy is the elastic jam distance, and affects the desired distance between vehicles (s*( v, Av,))

as seen in Equation 4-2.

, . v . v Av
‘5"*( Vs e"E"rx) - “"‘II]lﬂ:I + “"':Il.ﬂaI | I'Z_-:' + TUT} L M= ;
N| v, 24/ gt pled

Equation 4-2: Desired distance to vehicle directly in front

I changed the S; factor by -50%, -25%, +25% and +50%, ran each simulation 5 times and
plotted the average data on the standard extremal variate graph for the Gumbel distribution. I
then extrapolated the top 30% of each data set as discussed in Chapter 6 and plotted them
below in Figure 7-1. It is quite evident from Figure 7-1 that a decrease in S; results in an
increase in the characteristic moment on the bridge. Likewise when S; is increased, the
characteristic moment decreases. Also included in Figure 7-1 is an error bar showing + and —
1 standard deviation of the Base Model as discussed in Chapter 6. This shows the magnitude

of the change in the characteristic moment due to S; compared to the Base Model.
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s; Extrapolation - 168 Days
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Figure 7-1: s; Extrapolation of 168 day normally distributed IDM

However, it is noted that a decrease in S; by 25% has no effect on the characteristic moment
and an increase of 25% has a large effect on the characteristic moment. This implies that they
extrapolation is not very accurate and requires more data points. In order to get a more
accurate extrapolation, I decided to simulate the change in S; with 168 days of constant IDM
parameters and also with 840 days of normally distributed IDM parameters in a similar

manner to the Base Model in chapter 6. The resultant graphs are plotted in Figure 7-2 and

Figure 7-3 respectively.
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s; Extrapolation - Constant IDM
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Figure 7-3: s; Extrapolation of 840 day normally distributed IDM
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Figure 7-2 and Figure 7-3 are very similar except for +25% S;. In Figure 7-2, the +25% S,
characteristic value is 32500KNm which is similar to that of Figure 7-1 but quite different to
the characteristic value of the 840 day simulation in Figure 7-3 of 36400KNm. Due to the
much higher number of data points in Figure 7-3, 840 vs. 168, Figure 7-3 is presumed to have
a better extrapolation of the characteristic value. The characteristic values of both +50% S;
and +25% S; are within 1 standard deviation of the characteristic value of the normally

distributed Base Model.

7.2.1 -50% S;

A decrease of 50% in S; from 20m to 10m has caused the characteristic moment to change
from 36400KNm to 44700KNm, which is an increase of 23%. This is the most significant
increase out of all the parameters. However, the percentage increase in the characteristic
moment is only half that of the decrease in S;. As shown in Figure 7-6, the LC rate increases
by 5% from 2823 LC/hr/km to 2966 LC/hr/km while the density decreases from 80.20
veh/km to 77.73 veh/km. This decrease in density is only 2.47 veh/km or 3% of the base
level, which equates to 0.247 veh/100m and therefore negligible to the load affect on the
bridge.

The maximum moment from the -50% S; normally distributed IDM parameters simulations is
34478KNm and is a 5-truck load event. As with in the base model, 6-truck and 7-truck load
events did occur but did not govern. A note of interest from Figure 7-4 is that the same 5
trucks make up the maximum moment for the Base Model in Figure 6-6, but are in a different
configuration and most importantly, the headway distances in lane 1 are smaller due to S;
being decreased from 20m to 10m. The reduction in the headway distance is the reason why
the moment has increased. The dimensions of the headway distances given in Figure 7-4 are

1n metres.
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Truck Configuration on bridge for Iax Moment of 34475E Nm

51,57

Figure 7-4: 5-Truck load event Configuration for Max Moment for -50% S, of 34478KNm

As discussed above, the maximum load event is a 5 Truck event as shown in Figure 7-4.
Figure 7-5 below, shows each load event type plotted with respect to the standard extremal
variate of the Gumbel distribution for 840 Days of normally distributed simulated traffic. It
can be seen from Figure 7-5, that 1 Truck, 2 Truck, 3 Truck and 4 truck load events have a
steeper slope than that of 5 Truck and 6 Truck load events, indicating that they will converge
at a maximum moment much sooner than 5 Truck and 6 Truck load events. 1 Truck, 2 Truck,
3 Truck and 4 truck load events have the most data points, 19% of the total load events each.
The 5 Truck load events have nearly as much with 18%. The 6 Truck load events have much
less data points, 5.5% and the 7 truck load events have only 0.5% of the total load events. It is
because of these small percentages that a 6 Truck load event or a 7 truck load event does not
govern. Only 1 8 Truck load event was recorded. 6 Truck, 7 Truck and 8 Truck load events
do have the potential to govern but a much greater amount of data must be simulated in order

for heavy 6 Truck, 7 Truck and 8 Truck load events to occur.

By comparing Figure 6-9, the type of load events vs. moment for the Base Model, against
Figure 7-5, it can be seen that the 1 Truck and 2 Truck lines are nearly the exact same, while
the 3 Truck, 4 Truck, 5 Truck and 6 Truck slopes slacken out more on Figure 7-5, which
leads to greater moment. This makes sense as the decreased headway distance between
vehicles makes little or no difference to 1 Truck or 2 Truck load events but does affect 3
Truck, 4 Truck, 5 Truck and 6 Truck load events by allowing the vehicles to drive closer
together which means more vehicles on the bridge, therefore greater bending moment on the

bridge.
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Figure 7-5: Type of Multiple Truck load Event vs. Moment -50% .S,

7.2.2 Lane Change ratio and Density

As S, is increased, the density of vehicles (veh/km) increases and the lane change ratio (lane
changes/hr/km) decreases, as shown in Figure 7-6. The density increases from 77.7 veh/km
for -50% S; to 88 veh/km for +50% S;. This is an increase of 10.3 veh/km or 13%, which is
the greatest change in the density of all the parameters tested. The lane change rate decreases
from 2966 LC/hr/km for -50% S; to 2515 LC/hr/km for +50% S;. This is a decrease of 451
LC/hr/km or 15% which is also the greatest change in the lane change rate of all the
parameters analysed. These changes in the lane change rate of +15% and in the density of -
13% are quite small in comparison to the fact that S; is changed across a 100% range. It is
strange that an increase in the lane change rate corresponds with a decrease in the density.

However this is consistent across all of the parameters analysed.
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7.3 Desired Headway Time (7), Outside Lane Bias (d5i,5) and Politeness factor (P)

Figure 7-6: Lane Change rate vs. Density for changes to S,

The same procedures and analysis techniques are used for the following parameters as have

been used for S; In an effort to reduce the length of this dissertation, the results of the

following parameters are summarised and presented below.

T is the Desired Headway Time between vehicles and effects the desired headway distance

(s*(v, Av,)) in Equation 4-2 below. T is multiplied by the current velocity (v) of the

vehicle. It is clear to see that at low velocities, the effect 7 has on the desired headway

distance is reduced. It is for this reason that s; has a bigger effect on the desired headway

distance in congested traffic than 7.

s (v, Av ) = .5':::.

a)

+ =5

N o

(a) | v,
|__':.ﬂ‘-'\.:'

+ T +

v, Av,

24/ qlal plal

Equation 4-2: Desired distance to vehicle directly in front
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Opias 18 the Outside Lane Bias factor and is used in the ‘incentive criterion’ for lane changes.
Opias 18 added to the Lane Change Threshold (dy,) if a vehicle is changing from the outside
lane to the inside lane, and is subtracted from the Lane Change Threshold (d,,) if the vehicle
is changing from the inside lane to the outside lane. This is shown below in Equation 4-4 and

Equation 4-5.

acc'(M") — acc (M) + P lacc'(B) — acc (B")] = &thr + dbias

Equation 7-1: Incentive Criterion - Right to Left

uce' (M7) — ace (M) + P luce’ (B) — uce (B)] = dthr — Obius

Equation 7-2: Incentive Criterion — Left to Right

P is the Politeness factor and is also used in the ‘incentive criterion’ for lane changes and is
shown above in Equation 4-4 and Equation 4-5. P is multiplied to the disadvantage of the
vehicles directly behind the vehicle considering changing lane. This weights the disadvantage

to others with respect to the vehicles own advantage.

7.3.1 Desired Headway Time (7)

T behaves as would be expected. As T is increased, the moment in the bridge decreases.
Likewise, as T is decreased, the moment in the bridge increases. When T is changed by
+50%, the characteristic moment reduces by 3.6%. When 7T is changed by -50%, the
characteristic moment increases by 7.2%. This equates to an overall change in the
characteristic moment of 10.8% for a 100% change in 7. Also the greatest change in the
characteristic moment is just outside 1 standard deviation of the Base Model characteristic

value as show below in Figure 7-7.
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Figure 7-7: T Extrapolation of 840 Day normally distributed IDM

The lane change rate for 7 decreases by 7.4% from 2900 LC/hr/km to 2685 LC/hr/km
between -50% T and +50% T. The density increases by 0.5% from 76.6 veh/km to 81 veh/km
between -50% 7" and +50% 7. This change in density relates to 0.04 veh/100m and therefore

has no effect on the load on the bridge.

It can be seen clearly that changing 7" does affect the characteristic moment on the bridge but
a change of -50% needs to be made to 7T to change the characteristic moment by +7.2%. The
change in the characteristic moment due to -50%7, +7.2%, is just outside 1 standard
deviation of the variability of the IDM parameters being distributed across a normal
distribution, +6.4%. Therefore a change in T affects the characteristic moment only slightly
more than the distribution of the IDM parameters across a normal distribution does. It can
also be noted that unlike in Figure 7-3 for S, all the data points are quite near each other in
Figure 7-7, which adds strength to the argument that 7 does not affect the characteristic

moment significantly when traffic is congested.
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7.3.2 Outside Lane Bias (6bias)

Figure 7-8 below shows the extrapolation of d, as it is increased and decreased by 25% and
50%. When s is changed by -25%, the characteristic moment decreases by 3.6%. When
obias is changed by +50%, the characteristic value increases by 5.2%. This is a total change
of 8.8% across a 100% change in 5, and as before with 7, is within 1 standard deviation of
the Base Model Characteristic value. Changes of -25% obias and +50% Jp;ss do not change
the characteristic moment. It can also be seen in Figure 7-8 that all the data points are quite
near each other like in Figure 7-7 for 7. This indicates that like 7, dp;,s only has a small effect
on the characteristic moment for congested traffic. A decrease in the lane change rate of only
0.5% and an increase in the density of only 0.35% across a 100% change in 0y, strengthens

the above statement.
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Figure 7-8: ;s Extrapolation of 840 Day normally distributed IDM
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7.3.3 Politeness factor (P)

Like 7" and 045 previously, changing P does affect the characteristic moment but not in a
linear manner. The minimum characteristic value, 5.2% less than the base value, is when P is
increased by 50%. The maximum characteristic value, 3.8% greater than the base value
occurs when P is increased by 25%. This implies that increasing P, i.e. increasing the
politeness of the drivers, can affect the moment on the bridge in either a negative or a positive

manner.

When P is changed from -50% to +50% of the base value, the lane change rate decreases
from 2840 LC/hr/km to 2788 LC/hr/km. That is a decrease of only 2%. As the drivers
become more polite, less lane changes take place but only marginally less. This is interesting,
because like dpi45, P 1s related to lane changes but has barely any effect on the lane change

rate in congested traffic, much like dbias.

The density changes from 80.3 veh/km to 80.17 veh/km when P is changed from -50% to
+50% of the base value. This is a decrease of 0.2% which is negligible. P shares other
similarities with 7" and J,s as can be seen below in Figure 7-9. Firstly all the data points are
very close together for all the increments of P and secondly the maximum and minimum
characteristic values are within 1 standard deviation of the characteristic value from the Base
Model. P does have an effect on the characteristic moment of the bridge but it is only a small
effect and is within a standard deviation of the base value, therefore it has no more effect on
the characteristic moment than the distribution of the parameters across a normal distribution

does.
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Figure 7-9: P Extrapolation of 840 Day normally distributed IDM

7.4  Minimum Jam Distance (S))

Sy affects the desired headway distance between vehicles (s*( v_, Av_)) as shown in Equation

4-2.
p , o _ 17, A
st (v, hv) =| s 4 s gt T¥r+ ——
\ vy 24/ ale) plal

Equation 4-2: Desired distance to vehicle directly in front

Because Sy is small (1m) compared to S; (20m) and 7(v) (1.5*8), it has very little effect on
the desired distance between vehicles and therefore the maximum moment on the bridge. The
change in the lane change rate between -50% Sy and +50% Sy is -1%. The density is changed
by +0.3% for the same increments. Both the change in the lane change rate and the change in

density are negligible. When ) is changed by -50%, the characteristic moment changes by
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+3%. The maximum negative change to the characteristic value, -0.8%, is caused by changed
Soby +25%. This is a total of 3.8% of a change in the characteristic moment while Sy is varied
by 100%. As the minimum jam distance is decreased, the characteristic moment increases
and as the minimum jam distance increases, the characteristic moment decreases. This makes
sense but the magnitude by which a change in Sy effects the characteristic moment is quite
small. Once again, as with 7, Jbias and P, the maximum changes to the characteristic
moment due to changes in Sy, are within 1 standard deviation of the Base Model
characteristic moment and all the data points are very close to each other. Therefore Sy does

not significantly effect the characteristic moment on the bridge for congested traffic.
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Figure 7-10: S, Extrapolation of 840 Day normally distributed IDM
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7.5 Lane Change Threshold (6.,)

Omr 18 a factor in the ‘Incentive Criterion’ for lane changes and is included in the equation to
prevent lane changes taking place that are only of marginal advantage to the driver i.e. lane

hopping. The ‘Incentive Criterion’ is shown below in Equation 4-4 and Equation 4-5.

ace' (M') — ace (M) + P [acc'(B') — ace (B"]] = &thr + &bias

Equation 7-3: Incentive Criterion - Right to Left

acc' (M’) — acc (M) + P [acc' (B) — acc (B)] = dthr — Sbias

Equation 7-4: Incentive Criterion — Left to Right

As can be seen in Figure 7-11, when d,, is increased by 50%, the characteristic moment
changes by +3.6% and when Jy, is decreased by 50%, the characteristic moment decreases by
2.2%. This equates to a total change of 5.8% when d, is varied by 100%. Like the previous
parameters, the maximum changes to the characteristic moment are within 1 standard
deviation of the characteristic moment from the Base Model and all the data points are very
close to each other. There is no change in the lane change rate or in the density when dy, is
varied. This is significant as dy, is included to stop lane hopping. From this it can be said that

Oy has little or no effect on the maximum moment on the bridge for congested traffic.
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8 Conclusions

8.1 Sensitivity Analysis

A sensitivity analysis was carried out on a 2 lane, 100m long, simply supported bridge. 6
IDM and MOBIL parameters were analysed for increases and decreases of 25% and 50%. A
Base Model was set and analysed using both constant parameters and normally distributed
parameters. It was found that the normally distributed parameters caused each of the 10 base
simulations to yield slightly different characteristic values, even though the parameters were
set at the same value for all 10. This variation in the characteristic values proved to be
significant, with a minimum variation from the mean of -9.3% and a maximum variation
from the mean of +11.2%. This resulted in a standard deviation of + or - 6.4% of the mean
which is greater than the variations in the characteristic values due to the variations of the

parameters Opqs, P, Sp and d4,-by + and — 25% and 50%.

The amount of days of data used versus the accuracy of the extrapolation to the 1000 year
return period was briefly studied. It was found that more data means more accuracy in
predicting a characteristic value. The extrapolations for 168 day simulations were far less

organised than the extrapolations for 1680 day simulations.

It was shown that 7, dy;,s and P, do affect the characteristic value when changed but the
percentage at which they affect the characteristic value compared to the percentage that they
are changed is quite small. For instance, a decrease of -50% in 7, results in an increase in the
characteristic moment of +7.2%. This is only 14.4% of the change in 7 and only +0.8% more
than +1 standard deviation of the Base Model. The characteristic value due to -50% 7 is the
only characteristic value from all the variations of 7, d,;,s and P that is greater than 1 standard
deviation of the Base Model. It was also noted that P and d,;,s have a negligible effect on the
lane change rate in congested traffic. This is significant as both P and 0y, are included in the
‘incentive criterion’ to increase or decrease lane changes. A decrease of -50% in 7T, changes

the lane change rate by only 3% which is also negligible compared to the decrease in 7.

The parameters Sy and J,, are shown to effect the characteristic moment on the bridge less
than 7, dpius and P. This is interesting as Sy is the minimum jam distance in congested traffic.
It was shown that because the traffic analysed was travelling at a speed of 2m/s and not at a

stop, Sy has a negligible effect on the moment on the bridge. Changing J,,- by + and - 50%
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has no effect on either the lane change rate or density. This is a significant discovery because
O 18 included in the ‘incentive criterion’ to decrease random lane changes. The effect Sy has

on the lane change rate and density is also negligible.

The Elastic Jam Distance (S;) was found to have the most significant effect on the
characteristic moment on the bridge in congested traffic. A change of -50% in S}, results in a
change in the characteristic moment of +23%, far greater than 1 standard deviation of the
characteristic value from the Base Model. A change of -25% in S, also resulted in an
increase, +9.9%, in the characteristic moment, beyond the range of 1 standard deviation of
the Base Model. Increasing S; did not effect the characteristic moment beyond 1 standard
deviation of the Base Model. It should be noted that this work did not carry out a study to see
how realistic an S; value of 10m or 30m is compared with measured traffic. This work
concentrated on changing each parameter by the same percentage in order to be able to

compare results.

From this work it is apparent that the variability of the parameters across the normal

distribution has more effect on the characteristic value than most of the parameters.

e §; has a greatest effect on the characteristic moment on the bridge for congested
traffic but even still must be changed by a large percentage in order to induce a

significant change in the characteristic moment.

e T has a small effect on the characteristic moment on the bridge for congested traffic

but it is negligible.

® Opus and P have a small effect on the characteristic moment on the bridge for
congested traffic but it is less than 1 standard deviation of the base model. This effect

on the characteristic moment is negligible and therefore 0;,; and P could be neglected.

e Sy and J,, have barely any effect on the characteristic moment on the bridge for

congested traffic and so can be neglected.

Considering that long span bridges are designed for the worse load that may occur in its
lifetime, it is reasonable to neglect the parameters that do not affect the characteristic moment
significantly. These parameters seek to model traffic as realistically as possible but in doing
so add unnecessary complexity and variability to the process of traffic microsimulation

loading for long span bridges. By excluding the parameters that do not contribute to the
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characteristic moment, traffic micosimulation for long span bridges can be made simpler and

more user friendly.

8.2 Further Research

Throughout this work various opportunities for further research have presented themselves

and have remained unexplored. These are outlined below.

The traffic analysed in this study was congested traffic at a speed of 2m/s but did not come to
a halt and induce the ‘accordion effect’ at any stage during the simulations. An interesting
research opportunity would be to double to flow of traffic to induce such effects and also to
run the traffic in free flow to see if the results from this study were consistent across different

traffic flows.

To fully realise what effect dpius, P, Sp and 4, have on the characteristic moment on a long
span bridge, it would be of interest to exclude them from the traffic microsimulation model
and simulate the traffic as in this work to see what effect, if any this has on the characteristic

moment of the bridge.
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