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Abstract 

 

This thesis contributes to the development of traffic microsimulation for long span bridges. 

Microsimulation is used to model measured traffic flow conditions taking into account the 

effects of vehicle interactions and driver behaviour. Current bridge design loading models in 

design codes are far too conservative. This is not an issue in most new builds, as an increase 

in the strength of the bridge is not too expensive. However in the area of existing bridges that 

are presumed to require repair or replacement, great cost savings can be made by proving that 

an existing bridge is safe for the load carried during its lifetime. Traffic microsimulation 

allows greater volumes of traffic data to be generated that would otherwise be very costly and 

time consuming to accumulate. Therefore more traffic can be analysed using traffic 

microsimulation, resulting in a more accurate assessment of the ultimate traffic loading on 

long span bridges. 

The maximum load on long span bridges occurs due to congested traffic. This thesis assists in 

the further development of accurate and efficient modelling of congested traffic. Evolvetraffic 

is a traffic microsimulation model for bridge loading and uses the IDM car following model 

and the MOBIL lane changing model to simulate real traffic flow. Between the IDM and 

MOBIL, there are 10 parameters that can be altered by the user to describe different driver 

characteristics. This thesis carries out a sensitivity analysis on these parameters and discovers 

which parameters have the most effect on the lifetime load of long span bridges. By 

neglecting parameters which have no effect on congested traffic loading, the process of 

simulating congested traffic can be made simpler with less variables and therefore more user 

friendly. 
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1 Introduction 

 

Highway bridge load models in bridge design codes are generally quite conservative. Whilst 

this is not a problem for most newly constructed bridges, the codes are particularly 

conservative for the renovation of existing bridges. The cost of repairing existing bridges to 

the existing conservative loading codes is considerable and is an area where large savings can 

be made. This has given rise to the increase in the development of accurate assessments of 

the actual loads that a bridge may be subject to.  

Traffic microsimulation can be used be estimate rare extreme loading events that may result 

from the traffic at a measured site in the bridge lifetime. This thesis aims to assist in the 

advancement of such microsimulation techniques by conducting a sensitivity analysis on 

EvolveTraffic, a traffic microsimulation model for bridge loading. This study is particularly 

interested in congested traffic on long span bridges. By varying each individual IDM 

parameter while keeping every other variable at a constant level and simulating the traffic 

travelling across a 100m long simply supported bridge, the change in the moments in the 

bridge due to each parameter can be calculated. The significance of each parameter with 

respect to the moment in the bridge can then be determined. This will allow greater 

knowledge of which parameters benefit traffic microsimulation and which are not required. 
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2 Literature Review 

2.1 Introduction 

This chapter introduces the relevant information related to the microsimulation of congested 

traffic on long span bridges. Section 2.2 briefly introduces to concept of Weigh-In-Motion 

(WIM) and its advantages. Section 2.3 reviews the simulation of traffic. It lists the three main 

types of traffic models for bridge load effect and discusses in more detail the simulation of 

real traffic flow and outlines the various modelling methods previously developed. 

2.2 Weigh-In-Motion 

In order to define realistic traffic load models and to make realistic predictions for future flow 

effects, high quality information concerning the traffic flow on a bridge is required. The most 

appropriate method for long-span bridges is the application of Weigh-in-Motion (WIM) 

technology, Hayrapetova, 2007. Weigh-in-motion technology, Moses, 1979, paved the way 

for the use of precise measured traffic streams for the modelling of bridge loading. Prior to 

this, bridge load modelling involved sampling the traffic population through the use of static 

weigh stations as shown by Agarwal and Wolkowicz, 1976, or simply estimating the 

properties of traffic. These static weigh stations however, are known to give biased results as 

the drivers of overweight trucks often become aware of the weigh stations and avoid them, 

Caprani, 2005. The advantage of WIM is the ability to obtain more reliable modelling of the 

truck weight distribution as there is no pre-selection of vehicles and therefore, statistical bias 

of data is greatly reduced. Hayrapetova, 2007, states that this is crucial for the development 

of equivalent uniformly distributed load for individual lanes on long span bridges. Caprani, 

2005, states that WIM technology has given unbiased statistics of traffic characteristics and 

therefore allowed for more accurate traffic models to be used for bridge load modelling. 

2.3 Simulation of Traffic Loading 

Crespo-Minguillón and Casas, 1997 and O’Connor, 2001 note that there are 3 main types of 

traffic models for bridge load effect. These are Theoretical statistical models, Static Traffic 

Configurations and Simulation of real traffic flow and are described in further detail below. 
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2.3.1 Theoretical statistical models 

Caprani, 2005 states that stochastic process theory and distributions representing traffic 

characteristics are used in statistical convolution to determine the distribution of traffic loads 

that result. O’Connor et al, 2002; Fu and Hag-Elsafi, 1995; Ghosn and Moses, 1985; 

Ditlevsen, 1994; and Ditlevsen and Madsen, 1994 are examples. Theoretical statistical 

models are not of relevance to this particular study and therefore are not researched further. 

2.3.2 Static Traffic Configurations 

This model uses measured (or estimated) traffic data which is obtained from static weight 

stations and is used to calculate the resulting load effects on a bridge. Caprani, 2005, has 

noted that variation in the traffic stream is not allowed; therefore the quantity of traffic used 

is of major importance. This represents a significant drawback to this approach. Static traffic 

configurations are not relevant to this study and therefore are not considered further. 

2.3.3 Simulation of real traffic flow 

This model is of significant interest to this work and involves using measured traffic data 

from WIM technology as the basis for statistical distribution of traffic characteristics. Monte–

Carlo simulation is used to generate artificial, yet representative traffic which is then used to 

calculate load effects on bridges. This model allows for unobserved traffic to be modelled 

accurately so as it represents measured traffic, therefore allowing greater volumes of traffic 

loading to be simulated. O’Connor, 2001, Nowak, 1993 and Crespo-Minguillón and Casas, 

1997, identifies problems with the load effects that result when this process is not undertaken. 

It is this simulation of real traffic flow that is of particular importance to this study. By basing 

traffic models, defined by statistical distributions for each of the traffic characteristics, on a 

set of measured traffic, the traffic model can be claimed to represent real traffic, Caprani, 

2005. There are a number of different real traffic load models that have been developed 

previously and they are outlined below. 

2.3.3.1 Bailey, 1996 

Bailey, 1996, developed a detailed statistical traffic load model for medium to long length 

bridges and allows for different types of traffic flow. Bailey’s model is based on WIM data 

taken from various sites across Switzerland. The traffic is made up of 14 different types of 

vehicle which make up 99% of all Swiss truck traffic. The frequency of each vehicle type is 
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observed and used in the simulations. Bailey considers axle groups as having a single weight, 

and assumes that the weight is evenly distributed between closely spaced axles. A generalized 

bi-modal beta distribution is used to fit the observed axle group weights, as shown below in 

Figure 2-1. Correlation of this weight with the GVW is allowed for, through generation of the 

other axle weights based on the axle group weight. The geometries of the vehicles are 

modelled by a beta distribution for each of the axle spacings and overhangs of each type of 

truck. 

 

 

Figure 2-1: Axle-group weight distribution, Bailey, 1996 

 

2.3.3.2 Crespo-Minguillón and Casas, 1997 

Crespo-Minguillón and Casas’ generation of traffic and their modelling of each of the traffic 

characteristics, are outlined in the sequence below: 

• The annual mean daily flow is selected for the site under analysis. 

• Calibration curves for the traffic flow during the day of the week and the hourly 

variation are then used as shown in Figure 2-2. 

• A binomial decision making process is then used to determine whether the traffic 

state will be jammed or free-flowing, the parameters of this process are not given 
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by the authors, yet they are stated to be dependent on the hour. Therefore the 

increased probability of traffic jams occurring during rush hour is taken into 

account. 

• Given the state of the traffic and its flow, the traffic density can then be 

determined from measured flow-density curves shown in Figure 2-3. 

 

  

      

Figure 2-2: Calibration curves for traffic flow, Crespo-Minguillón and Casas, 1997 

 

    
 

      5 
 



 

Figure 2-3: Flow-Density curves for traffic condition, Crespo-Minguillón and Casas, 1997 

 

• The traffic compositions are taken from measured WIM data at the site. The 

vehicle type, for the next vehicle arriving on the bridge, is calculated using a 

Markov-chain method, with transition matrices based on those of the measured 

WIM data. 

• The velocities are then allocated to each vehicle based on a normalised velocity 

function which can then be related to the flow-density graph for the current flow 

condition. 

• Headway is assigned using the normalised headway model. Different such models 

are specified for different forms of driver behaviour, vehicle weights and lanes. 

• Weights and geometries are then allocated to each vehicle. Axle weights and 

Gross Vehicle Weight (GVW) are allocated based on measured correlations as 

shown in Table 1, between GVW and axle weights. Geometries are based on 

measured correlation coefficients for axle spacings. The GVW and axle weight 

distributions are defined numerically from measured cumulative distribution 

functions derived from the histograms of Figure 2-4. In running this model across 

a bridge, the authors allow for interaction between the vehicles; i.e. overtaking 

events and changes in speed are modelled.  
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Table 1: Correlation values between axle weights and GVW, Crespo-Minguillón and Casas, 1997 

 
Figure 2-4: GVW histograms for 2 vehicle types, Crespo-Minguillón and Casas, 1997 

 

2.3.3.3 Grave, 2001 

Grave, 2001, also develops a comprehensive traffic load model for use on short to medium 

length bridges. Most of the traffic characteristics have been modelled statistically by Grave. 

Only traffic composition percentages and flow rates are deterministic. The headway model 

used by Grave is the same as that of Crespo-Minguillón and Casas, 1997. The number of 

vehicle types is more limited than that of the other studies mentioned. Grave points out that 

the added complexity is not required for the WIM data under study. 

 

2.3.3.4 Treiber, Hennecke, Helbing, 2000 

The Intelligent-Driver Model (IDM) was developed by Treiber, Hennecke, Helbing, 2000, to 

simulate the longitudinal dynamics, i.e. accelerations and braking decelerations of the drivers. 

Treiber explains that the IDM is a “car-following model”. That is, the traffic state at a given 

time is characterised by the positions, velocities and the lane index of all vehicles. The 

decision of any driver to accelerate or to brake depends only on his own velocity and on the 
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vehicle immediately in front of him, while lane changing decisions depend on all the 

surrounding vehicles.  

The IDM has seven intuitive parameters: 

• Desired velocity on a free road (v0) 

• Desired safe time headway when following other vehicles (T) 

• Maximum acceleration (a) 

• Comfortable braking deceleration (b) 

• Minimum bumper to bumper distance to the vehicle in front when stopped (s0) 

• Elastic jam distance to the vehicle in front (s1) 

• Acceleration exponent (δa) 

According to Treiber, Hennecke, Helbing, 2000, the applied IDM belongs to the class of 

deterministic follow-the-leader models like the optimal-velocity model of Bando et al, 1995, 

but it has the following advantages:  

• It behaves as if accident-free because of the dependence on the relative velocity, 

• All model parameters have a reasonable interpretation, are known to be relevant, are 

empirically measurable, and have the expected order of magnitude. 

• The fundamental diagram and the stability properties of the model can be easily (and 

separately) calibrated to empirical data,  

• It allows for a fast numerical simulation, and 

• An equivalent macroscopic version of the model is known, which is not the case for 

most other microscopic traffic models. 

 

2.3.3.5 Kesting, Treiber, Helbing, 2007 

Kesting, Treiber, Helbing, 2007, developed a general model minimizing overall braking 

induced by lane change (MOBIL), to derive lane-changing rules for discretionary and 

mandatory lane changes for a wide class of car-following models. Both the utility of a given 

lane and the risk associated with lane changes are determined in terms of longitudinal 

accelerations calculated with microscopic traffic models, i.e. the IDM in this work. This 

determination allows for the formulation of compact and general safety and incentive criteria 

for both symmetric and asymmetric passing rules. Although the safety criterion prevents 

critical lane changes and collisions, the incentive criterion takes into account the advantages 
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and disadvantages of other driver associated with a lane change via the “politeness factor 

(P)”. The politeness factor allows for the variation of the motivation for lane changing from 

purely egoistic to more co-operative or polite driving behaviour. This means that lane 

changes that obstruct other drivers can be prevented and also that an aggressive driver can 

induce a lane change in order to no longer be obstructed.  

The MOBIL model has 3 intuitive parameters: 

• Lane change politeness factor (P) 

• Outside lane bias factor (δbias) 

• Lane change threshold (δthr) 

The MOBIL model allows lane changes to take place, if  

a) The potential new target lane is more attractive, i.e., the "incentive criterion" is 

satisfied, and 

b) The change can be performed safely, i.e., the "safety criterion" is satisfied.  

In the MOBIL model, both criteria are based on the accelerations on the old lane and on the 

prospective new lane, as calculated with the IDM. 

 

2.3.3.6 Caprani et al, 2008 

Caprani et al, 2008 developed EvolveTraffic, a traffic micosimulation model for bridge 

loading using Treiber et al’s IDM and MOBIL models. Caprani expands the capabilities of 

the IDM and MOBIL models by allowing the use of probabilistic IDM parameters as opposed 

to deterministic IDM parameters as used in all of Treiber’s work to date. This enables each 

vehicle within each vehicle class to have slightly different IDM parameters distributed 

according to 7 different distributions. The supported distributions, with parameters and some 

comments are listed below: 

• Exponential: Location and Scale parameters – may be useful for some parameters 

such as Safe Time Headway. Not suitable for most parameters, for example, Desired 

Velocity (v0).  

• Log-Normal: Location and Scale parameters – used in this work.  

• Gamma: Location and Scale parameters.  
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• Gumbel: Location and Scale parameters. 

• Poisson: Location and Scale parameters – provides a continuous approximation to the 

discrete distribution only valid when the location parameter is greater than 10. 

• GEV: Location, Scale and Shape parameters – although strictly an extreme value 

distribution, its flexibility (due to its 3 parameters) allows many phenomena to be 

modelled accurately. 

• Normal: Location and Scale – the standard Gaussian distribution of parameters mean 

and standard deviation.  

• Constant: Location – this is the deterministic option as no random numbers are 

generated and the parameter takes the value Location for all vehicles in the class – 

used in this work. 

The IDM and MOBIL models are used for the microsimulation of traffic in this research 

through the use of EvolveTraffic, a traffic micro simulation model for bridge loading, 

developed by Caprani et al, at University College Dublin in collaboration with Laboratoire 

Central des Ponts et Chausées, France, 2008. 
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3 Fundamental Theories 

 

3.1 Characteristic value and Extrapolation 

The characteristic value is the value of a random variable that is expected to be exceeded 

once in a given return period. For bridge design, it is usual to design the bridge for a return 

period of 1,000 years. The probability of exceeding a value (u) is given below in Equation 

3-1, where (X) is a random variable and (FX ()) is the distribution function. 

 

Equation 3-1: Probability of exceeding (u) 

 

For a given return period (R), consider (n) repetitions of the sampling period (TX), from 

which (X) was determined, such that: 

 

Equation 3-2: Repetitions of the sampling period 

 

The probability of the characteristic value (u) being exceeded in (n) repetitions is therefore 

given as: 

 

Equation 3-3: Probability of exceeding (u) in (n) repetitions 

 

By definition of a characteristic value, the value is expected to occur at least once in (n) 

repetitions; therefore the probability must be equal to unity and Equation 3-3 goes to 

Equation 3-4. 
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Equation 3-4 

The characteristic value may then be calculated as shown below in Equation 3-5. 

 

Equation 3-5: Characteristic value 

 

For this type of work, it is common to have 50 working weeks in the year with 5 working 

days per week. The distribution obtained from the simulations in this work is the maximum 

per day. This totals 250 days in a year and 250,000 days in 1000 years, therefore: 

 

Equation 3-6: Return period 

 

Equation 3-7: Characteristic value 

 

This characteristic value will correspond with a standard extremal variant derived from the 

Gumbel distribution as shown below in Equation 3-8. 

 

 

Equation 3-8: Characteristic value for Gumbel distribution 
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A sample extrapolation method on Gumbel probability scale is shown below in Figure 3-1. 

 

 

Figure 3-1: Sample Extrapolation method 
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4 Independent Driver Model 

4.1 EvolveTraffic 

EvolveTraffic is a traffic microsimulation model for bridge loading and was developed by 

Caprani et. al. at the School of Architecture, Landscape and Civil Engineering, University 

College Dublin, Ireland in liaison with Laboratoire Central des Ponts et Chausées, France, 

2008. EvolveTraffic is the traffic microsimulation model used in this work. 

EvolveTraffic simulates traffic behaviour for the purpose of analysing Highway Bridge 

loading. Vehicles are read into the program and are simulated driving along a length of road 

that can have speed limited features and gradient features. The vehicles interact with each 

other and can perform lane changes. When the vehicles pass the output detector, they are 

written to the output traffic file. The output traffic file contains the same vehicles as the input 

traffic file but in a different configuration. The configuration of the output file depends on the 

road and traffic features that the user has specified. It is this configuration of the output traffic 

file that is of interest to us as it allows us to obtain traffic data without physically measuring 

real traffic, which is both expensive and time consuming. EvolveTraffic considers 5 classes of 

vehicle: 

Class 0 – Cars: any vehicle under 3.5 tonnes 

Class 1 – Small trucks: any vehicle with less than 4 axles and greater than 3.5 tonnes 

Class 2 – Large trucks: any vehicle that is not a car, small truck, crane or low-loader 

Class 3 – Cranes: any vehicle that is not a car and has a maximum axle spacing of 

4.5m and average axle spacing less than 2.5m 

Class 4 – Low- Loaders: any vehicle that is not a car and has a maximum axle 

spacing not less than 7.5m 

The longitudinal model used in EvolveTraffic is the Intelligent Driver model (IDM) 

developed by Treiber et al, 2000. The Lane Change model MOBIL (Minimise Overall 

Braking decelerations Induced by Lane changes), developed by Kesting, Treiber, Helbing, 

2007, controls the lane changes for the car following model, i.e., the IDM. For each particular 

class of vehicle, there are 10 parameters to be set for the IDM and MOBIL models. 
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EvolveTraffic allows vehicles within each class to have varying parameters, i.e. EvolveTraffic 

allows probabilistic IDM parameters. 

4.2 Intelligent driver Model (IDM) 

The Intelligent Driver Model (IDM), developed by Treiber, Hennecke, Helbing, 2000, is a car 

following model, i.e., the traffic state at any given time is characterised by the positions, 

velocities and lane position of all the vehicles. The decision of any driver to accelerate or 

decelerate depends not only on his or her velocity but on the velocity of the vehicle directly 

in front. However the decision of any driver to change lane depends on all the neighbouring 

vehicles. 

The IDM has seven intuitive parameters: 

• Desired velocity on a free road (v0) 

• Desired safe time headway when following other vehicles (T) 

• Maximum acceleration (a) 

• Comfortable braking deceleration (b) 

• Minimum bumper to bumper distance to the vehicle in front when stopped (s0) 

• Elastic jam distance to the vehicle in front (s1) 

• Acceleration exponent (δa) 

The acceleration ( ) of any given driver at any given time depends on his/her own maximum 

acceleration (a), actual velocity (vα), desired velocity (v0), the distance (sα) to the vehicle 

directly in front and on the velocity difference or approach rate (∆v) to the vehicle in front as 

shown in Equation 4-1. 

 

Equation 4-1:  Acceleration of driver at any given time 

Where: 

 = maximum acceleration 
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v0 = desired velocity 

δa = acceleration exponent 

(sα) = distance to vehicle directly in front 

 = desired gap 

 

 

The desired distance to the vehicle directly in front ( ) is given below in Equation 

4-2. 

 

Equation 4-2: Desired distance to vehicle directly in front 

Where: 

 = desired gap 

 = minimum distance between congested vehicles 

 = elastic distance between congested vehicles 

 = actual velocity 

 = desired velocity 

 = safe time headway 

 = velocity difference between own vehicle (α) and vehicle immediately in front 

 = maximum acceleration 

 = comfortable deceleration 

 

4.3 MOBIL model 

The Lane Change model MOBIL (Minimise Overall Braking decelerations Induced by Lane 

changes) developed by Kesting, Treiber, Helbing, 2007, controls the lane changes for the car 
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following model, i.e., the IDM. Both the utility of a given lane and the risk associated with 

lane changes are determined in terms of longitudinal accelerations calculated with the IDM. 

This determination allows for the formulation of compact and general safety and incentive 

criteria for both symmetric and asymmetric passing rules. Although the safety criterion 

prevents critical lane changes and collisions, the incentive criterion takes into account the 

advantages and disadvantages of other drivers associated with a lane change via the 

politeness factor (P). The politeness factor allows for the variation of the motivation for lane 

changing from purely egoistic to more co-operative or polite driving behaviour. This means 

that lane changes that obstruct other drivers can be prevented and also that an aggressive 

driver can induce a lane change in order to no longer be obstructed.  

The MOBIL model has three intuitive parameters: 

• Lane change politeness factor (P) 

• Outside lane bias factor (δbias) 

• Lane change threshold (δthr) 

The MOBIL model allows lane changes to take place, if  

c) The potential new target lane is more attractive, i.e., the "incentive criterion" is 

satisfied, and 

d) The change can be performed safely, i.e., the "safety criterion" is satisfied.  

In the MOBIL model, both criteria are based on the accelerations on the old lane and on the 

prospective new lane, as calculated with the IDM. 

4.3.1 The safety criterion 

The safety criterion is satisfied, if the IDM braking deceleration (acc') imposed on the back 

vehicle (B”) of the target lane after a possible change does not exceed a certain limit (bsafe), 

this means, the safety criterion as shown below in Equation 4-3 is satisfied. 
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Equation 4-3: The Safety Criterion 

Where: 

B’ = the back vehicle on the target lane 

acc' = the acceleration after the possible lane change 

bsafe = limited value for brake deceleration 

4.3.2 The incentive criterion 

For the incentive criterion, the drivers own advantage on the target lane, measured by the 

increased acceleration or reduced braking deceleration, is weighted against the disadvantage 

imposed to other drivers, measured by the decrease acceleration or increased braking 

deceleration for these drivers. Since drivers tend to be selfish, the disadvantage imposed on 

other drivers is weighted with a Politeness factor (P) whose values are typically less than 1, 

resulting in the following incentive criterion. An outside lane bias factor (δbias) is introduced 

for European traffic which has asymmetric passing rules, and is included in the equation. The 

right lane is taken as the default lane and the left lane is the passing lane, i.e., a “keep right” 

directive is implemented by the outside lane bias factor (δbias). The incentive criterion for lane 

changes from “right to left” is given in Equation 4-4 below. 

 

Equation 4-4: Incentive Criterion - Right to Left  

The incentive criterion for lane changes from “left to right” is given in Equation 4-5 below. 
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Equation 4-5: Incentive Criterion – Left to Right 

Where: 

acc = the actual IDM acceleration 

acc’ = the acceleration after the possible lane change 

M = “Me” i.e., the driver changing lane, before the possible lane change 

M’ = “Me” after the possible lane change 

B = the back or following vehicle on the old lane 

B’ = the back or following vehicle on the target lane 

δthr = Lane change threshold  

δbias = Outside lane bias 

 

The first part of the equation [acc' (M”) - acc (M)] relates to the drivers own 

advantage as a result of the possible lane change. The second part of the equation [acc' (B’) - 

acc (B’)] or [acc' (B) - acc (B)], is the disadvantage to the vehicle following directly behind 

as a result of the possible lane change. The disadvantage to the following vehicles is then 

multiplied by the Politeness factor (P). The politeness factor (P) determines to which degree 

these vehicles affect the lane changing decision and allows lane changes to take place in 

congested traffic. Instead of simply modelling purely selfish behaviour, the MOBIL 

parameter (P) can be changed so as to model driver behaviour ranging from very courteous 

behaviour (P=1) to malicious behaviour (P<0). When P = 0-0.5, realistic driver behaviour is 

modelled, i.e., the advantages of other drivers have a lower priority than that of the drivers 

own, but they are not neglected. When P=0, purely selfish behaviour is modelled but the 

safety criterion is still satisfied. When P<0, malicious behaviour is modelled. The safety 

criterion is still satisfied but malicious drivers thwart and cause disadvantage to others, even 

at the cost of their own advantage. The right hand side of the equation consists of the Lane 

Change Threshold (δthr) and the Outside Lane Bias factor (δbias). It can be clearly seen from 

the “left to right” incentive criterion equation that even though (δbias) is small, it must be 

greater than (δthr); otherwise the Lane Changing Threshold would prevent changes to the 
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right-hand lane even on an empty road. The Lane Changing Threshold is included in order to 

stop lane changes that are only marginally more advantageous than not changing lane. This 

prevents lots of pointless lane hopping. It should also be noted that the Lane Change 

Threshold (δthr) and the Outside Lane Bias factor (δbias) influences the lane changing 

behaviour globally whereas the Politeness factor (P) affects the lane changing behaviour 

depending on the disadvantage of the involved vehicles. 

 

 

 

 

 

 

5 Data Acquisition and Processing 

5.1 Input Traffic 

The input traffic is generated using GenerateTraffic, a program created by Caprani, 2005. 

GenerateTraffic uses Monte-Carlo simulation to generate a traffic file whose statistical 

distributions are the same as the input distributions. GenerateTraffic allows the user to 

generate synthetic traffic using measured traffic data from various sites across Europe. The 

user can choose the number of days of traffic required, the number of lanes and directions of 

traffic required, the percentage of cars in the traffic, which site traffic flow data to be used 

and which site traffic weight data to be used. The traffic flow data and weight data can also 

be selected separately from different sites in order to obtain different traffic configurations.  

For this work, I required a large flow of heavy traffic. I used the traffic flow data 

coupled with the traffic weight data from the Auxerre WIM site in France as analysed by 

Grave, 2001, in order to represent real measured traffic. After some trial runs with different 

amounts of days of traffic, I chose to generate 28 days of traffic using GenerateTraffic as on 

average it took 45 minutes to analyse in EvolveTraffic on my laptop. For this work, I was 

looking for the daily maximum moment in the bridge and therefore needed the daily 
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maximum amount of traffic, i.e. rush hour traffic. I assumed 4 hours of rush hour traffic in a 

day, 2 hours in the morning and 2 hours in the evening. This meant that for every 24 hours of 

traffic simulated, I simulated 6 days worth of rush hour traffic. In total, this amounted to 168 

days of rush hour traffic for each Traffic Input file. The Traffic Input file has the same format 

as the Traffic Output file as shown in Figure 5-4 below. 168 days of traffic proved to be good 

mix between computation time and quantity of results. Hayrapetova, 2007, from her study of 

the Moerdijk link on the A16 highway in the Netherlands, stated that the average percentage 

of HGVs was 12.1% and peaked at 13.4% during rush hour times. I decided upon a 15% 

HGV content which is equal to 85% car content in order to model a high percentage of heavy 

goods vehicles (HGVs) in realistic rush hour traffic. I opted for a single direction input traffic 

file to save on unnecessary computation time and decided on a single lane configuration so 

that all the vehicles would be positioned in the outside lane at the start of the simulation 

process and that any lane changes would occur during simulation. The GenerateTraffic input 

file that was used for the synthetic traffic generation is shown below in Figure 5-1. 

e
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Figure 5-1: GenerateTraffic input fil



5.2  Road Configuration 

For this work I required the traffic to become congested. Therefore I decided on a road 

configuration that consists of a 3000m long, 2 lane, single direction road with a 10km/hr 

speed limit section between 2000m and 3000m. Two lanes were chosen to allow lane changes 

to take place. The road is in one direction to minimise unnecessary computation. The distance 

of 2000m before the speed limit section was chosen in order to allow the traffic to interact 

with each other and to allow lane changes to take place as the traffic approached the speed 

limit section. 10km/hr is the lowest speed limit that EvolveTraffic allows and was chosen to 

force the traffic to become congested. The Output detector is at 2200m along with the Flow-

Density detector and Headway detector as shown in Figure 5-2. The Lane Change detector 

writes the number of lane changes per 60 second time step per 200m intervals to the lane 

change output files. 

 

 

Figure 5-2: EvolveTraffic road configuration 

Each vehicle is read from the generated traffic input file and enters the road at 0m. The 

vehicles then proceed along the road, interacting with the neighbouring vehicles and the road 

features until it reaches the end of the length of road. When each vehicle reaches the Output 

Detector, it is written to the traffic output file along with the time of arrival at the Output 

Detector.  
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As the traffic approaches the speed limit section, the vehicles decelerate down from their old 

desired velocity to their new desired velocity which is dictated by the speed limit of 10km/hr. 

Subsequent vehicles decelerate and bunch up behind the lead vehicle by reducing the distance 

between vehicles because of the lower speed limit as shown in Figure 5-3. 

 

Figure 5-3: Traffic entering speed limit section in EvolveTraffic 

 

5.3 EvolveTraffic Output 

EvolveTraffic writes the traffic to the Traffic Output file when the traffic reaches to Output 

Detector. This Traffic Output File contains the same vehicle data eg. weight, length, number 

of axles, axle weights etc., as the Traffic Input file but in a different configuration due to the 

microsimulation of the traffic along the length of road. The Traffic Output file does not 

include cars so as to minimise file size and further unnecessary analysis. Because the cars are 

not heavy enough to significantly affect the load on the bridge, they are excluded in the 

analysis of the bridge bending moment. Cars are still a very important aspect of traffic 

microsimulation. Even though they do not contribute significantly to the overall load on the 

bridge directly, they do act as spacers between HGVs which has a huge effect on the 

maximum load on the bridge. Therefore cars must be included in traffic microsimulation to 
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determine the distance between HGVs. A typical Traffic Output File is shown below in 

Figure 5-4. 

 

Figure 5-4: Typical Traffic Output File 

 

5.4 Bridge bending moment analysis 

For this work I am analysing the sensitivity of the IDM parameters on congested traffic on 

long span bridges. Caprani, 2005, has previously examining the effect of micro simulation of 

traffic on short to medium span bridges, i.e. 20m to 50m. For long span bridges the governing 

loadcase is congested traffic, i.e. the greatest static load on the bridge. I decided to use a 

100m single span, simply supported, 2 lane, single direction bridge for this work. The 

maximum moment is calculated at mid-span with a lane factor of 1, i.e. the two lanes load the 

bridge equally. The Traffic Output file is analysed using a program developed by Caprani, 

2005, called MarchTraffic. The influence line for a single span bridge is Load Effect 1 in 

MarchTraffic. This helped simplify the analysis of the results. 

MarchTraffic simulates the effect of the traffic file crossing the bridge and produces, for each 

effect, a block maxima value. To save on unnecessary processing time, only Significant 

Crossing Events (SCEs) are processed. These are defined as any Multiple Truck Presence 

Event (MTPE) or the occurrence of any truck with Gross Vehicle Weight (GVW) of over 40 
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tonnes. When a SCE is found, the trucks involved are passed to an algorithm that uses the 

required influence line to calculate the induced load effect. The trucks are passed across the 

bridge in 0.02 second steps (less than 0.05m for a speed of 8km/hr as used in this work). The 

load effect is calculated at each step and the maximum value of each load effect is kept for 

further analysis along with the time it occurs at and the position of the front axle of the first 

truck on the bridge. A typical MarchTraffic input file is shown below in Figure 5-5.  

 

Figure 5-5: Typical MarchTraffic input file 

A typical MarchTraffic output file for a 5 truck event is shown below in Figure 5-6. Line 2 of 

the MarchTraffic output file below is the load effect information line. The format is Load 

Effect ID, Value, Time, Distance, Number of Trucks. Lines 3-7 contain the full truck 

information from the Traffic Output file for all the trucks involved in the event. 
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Figure 5-6: Typical MarchTraffic output file for a 5 truck event 

5.5 Processing of Results 

I have compiled nearly 100GB of results from nearly 300 hours of traffic microsimulation 

during this work so finding an efficient way to process these results was crucial. The output 

files from MarchTraffic and EvolveTraffic are in .txt and .csv format, both of which are easily 

transferable into Microsoft Excel, which I used throughout this work. I developed Excel 

spreadsheets to sort and compile the relevant data from the output files but even still, the 

analysis of results proved to be a very tedious process.  
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6 Analysis of Results 

6.1 Layout of analysis 

Firstly I ran the traffic Input file with a base set of Independent Driver Model (IDM) 

parameters to get a base result for the characteristic moment for a 1000 year return period for 

the bridge. Because EvolveTraffic allows probabilistic IDM parameters i.e. each parameter 

can be distributed according to a number of different distributions, running the exact same 

settings twice will result in slightly different results. EvolveTraffic also allows for the IDM 

parameters to be set constant across each vehicle class.  In an attempt to combat this, I 

repeated the base simulation 10 times and averaged the results to give a better estimate of the 

characteristic moment value. 

6.2 Base IDM parameter values 

In order to be able to conduct a sensitivity analysis on the IDM parameters, I first needed to 

have a base from which I could compare future results. Each of the 5 vehicle classes can have 

different IDM parameter values. In order to simplify matters, I set Cars and Small Trucks to 

have the same parameter values and Large Trucks, Cranes and Low-loaders to all have the 

same parameter values. The parameters T, a, b, s0, s1 and v0 are distributed across a normal 

distribution, while the parameters δa, P, δbias and δthr are set constant across each vehicle class. 

The Location value is the mean and the Scale value is the standard deviation. The base values 
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for Cars and Small Trucks are shown in Figure 6-1, while the base values for Large Trucks, 

Cranes and Low-Loaders are shown in Figure 6-2. 

 

Figure 6-1: Base IDM parameter values for Cars 

 

 

Figure 6-2: Base IDM parameter values for Large Trucks 
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6.3 Max Moment per Day 

After running the base model 10 times I compiled the results in Microsoft Excel and plotted 

the relevant graphs. A portion of the Max Moment per Day (MMPD) graph is shown below 

in Figure 6-3. It can be clearly seen in Figure 6-3 that the probabilistic nature of the traffic 

simulation in EvolveTraffic and the fluctuation in the normally distributed parameters can 

lead to quite different max moment per day values for the same time period in each 

simulation, up to 17% in some cases.  

 

Figure 6-3: Max Moment per Day Graph for all 10 Simulations of Normal Distribution Base Model 

The Average MMPD graph is plotted below in Figure 6-4. This shows that the average max 

moment per day fluctuates between 20000KNm and 25000KNm with the highest peaks 

reaching up to 27000KNm. 
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Figure 6-4: Average Max Moment per Day of Normal Distribution Base Model 

Due to the high degree of variance of the MMPD values between each simulation, I decided 

to simulate the Base Model with all the IDM parameters set constant across each vehicle 

class to see what difference, if any, the fluctuations of the IDM parameters due to the normal 

distribution makes to the MMPD values. I found that, when the IDM parameters are set to 

constant values across each vehicle class, there is no change in the MMPD graph for each 

subsequent simulation. This means that the variance in the MMPD values in Figure 6-3 are 

caused by the distribution of the IDM values across a normal distribution. The MMPD of the 

Base Model with constant IDM parameter values versus the average MMPD with IDM 

values distributed across a normal distribution are shown below in Figure 6-5. The blue line 

is from the constant IDM values model and the red line is from the normally distributed IDM 

values model. 
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Figure 6-5: Max Moment per Day – Constant vs. Normal Distribution IDM parameters 

 

The maximum moment of all 10 normal distribution simulations of the base model is 

30251KNm from a 5-truck load event. 6-truck and 7-truck load events did occur but did not 

govern due to lesser amount taking place compared to 5-truck events. 22% of the total load 

events were 5-truck load events, 3% were 6-truck load events and 0.2% were 7-truck load 

events. The truck configuration of the max moment load event on the bridge is shown below 

in Figure 6-6. The trucks are shown in blue. The bridge is 100m long and is shown in grey. 

The weights of the trucks are labelled on the trucks and are given in tonnes (t) eg. 53.4t and 

the distances are given in metres.  

 

Figure 6-6: Truck Configuration on bridge for Base Model Max Moment of 30251KNm  
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As can be seen above in Figure 6-6, the average headway distance is 27m. The trucks are 

travelling at a speed of 2.2m/s, this relates to a headway time of 12 seconds which is greatly 

removed from the Safe Time Headway (T) of 1.5 seconds set for the simulation. This is due 

to the equation for the desired distance to the vehicle directly in front ( ) as shown 

below in Equation 4-2. The headway distance of 27m between vehicles is due to the large 

value of 20m for the elastic distance between congested vehicles (s1) with respect to the 

minimum distance between congested vehicles (s0), (1-3m), and the safe time headway (T), 

(1-2secs). In Equation 4-2 below, it can be seen that (s1) outweighs (s0) and (T) considerably. 

 

 

Equation 4-2: Desired distance to vehicle directly in front 

 

 

 

6.4 Extrapolation 

In order to find the characteristic moment value for the Base Model, I plotted the standard 

extremal variate of the Gumbel distribution versus the maximum moment per day. I fitted a 

trendline to the top 30% of the data and extrapolated up to the return period value of 12.429 

to find the characteristic max moment value. 

Firstly I plotted the 10 simulations with normally distributed IDM parameters and noticed the 

variability between each plot. This can clearly be seen in Figure 6-7 below. In order to 

compare this variation of the characteristic value with future parameter changes, I calculated 

the standard deviation of the 10 characteristic values and plotted + and - 1 standard deviation 

on Figure 6-7. 
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Figure 6-7: Base Model Normally Distributed IDM values x10  

Seen as I am only using the top 30% of the data, which represents only 50 data points, to 

extrapolate to find the characteristic value, I choose to simulate 1680 days of data and plot it 

versus the average of the 168 days of data plotted above in Figure 6-7. The top 30% of the 

1680 days data contains 500 data points, therefore will provide a relatively more accurate 

extrapolation. As can be seen in Figure 6-8, the 168 day average and the 1680 extrapolations 

are remarkably similar. The characteristic value of the 1680 day simulation is within 0.5% of 

the characteristic value of the average for the 168 simulation. Also plotted on Figure 6-8 is 

the 168 simulation with constant IDM parameters. The constant IDM characteristic value is 

within 1.6% of the characteristic value of the average for the 168 simulation. Therefore the 

average extrapolation of the 10 normally distributed simulations is an accurate approximation 

of the characteristic moment on the bridge for the base IDM parameters. 
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Figure 6-8: Base Model Extrapolation 1680 Days vs. 168 Days 

6.5 Lane Changes and Density 

The greatest amounts of lane changes takes place as the vehicles enter the speed limit section. 

The simulations with normally distributed IDM parameters have an average lane change rate 

(LC) of 2823 LC/hr/km while the simulation with constant IDM parameters has a LC rate of 

3037 LC/hr/km. The normally distributed IDM simulation has an average density of 80.20 

veh/km while the constant IDM simulation has a density of 76.32 veh/km. 

6.6 Number of Trucks in Load Events 

As discussed above in Section 6.3, the maximum moment on the bridge was caused by a 5-

Truck load event even though 6-Truck and 7-Truck load events occurred. Figure 6-9 below, 

shows each load event type plotted with respect to the standard extremal variate of the 

Gumbel distribution for 840 Days of normally distributed simulated traffic. It can be seen 

from Figure 6-9, that 1 Truck, 2 Truck, 3 Truck and 4 truck load events have a steep slope 

indicating that they will converge at a maximum moment much sooner than 5 Truck and 6 

    
 

      34 
 



Truck load events. 1 Truck, 2 Truck, 3 Truck and 4 truck load events have the most data 

points, 20% of the total load events each. The 5 Truck load events have nearly as much with 

18%. The 6 Truck load events have much less data points, only 2% of the total load events 

and this is why a 6 Truck load event does not govern. Only 1 7 Truck load event was 

recorded which incidentally has the smallest magnitude of moment recorded. 6 Truck and 7 

Truck load events do have the potential to govern but a much greater amount of data must be 

simulated. 

 

Figure 6-9: Type of Multiple Truck Load Events vs. Moment 

 

6.7 Free Flow Model 

In order to have a base to compare the congested traffic results to, I simulated the traffic input 

file in free flow without the 10km/hr speed limit section and calculated the maximum 

moments per day in the bridge, as shown below in Figure 6-10. It can be clearly seen that the 

moment is much less than that of congested traffic in Figure 6-4. The maximum moment per 
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day varies from 12000KNm to 17000KNm for free flow traffic and from 20000KNm to 

27000KNm for congested traffic.  

 

Figure 6-10: Average Max Moment per Day of Normal Distribution Free Flow Model 

 

The maximum moment on the bridge was caused by a 2-Truck event. Figure 6-11 below, 

shows each load event type plotted with respect to the standard extremal variate of the 

Gumbel distribution for 1680 Days of normally distributed simulated free flow traffic. A 4 

truck load event did not occur. It can clearly be seen that 1-Truck and 2-Truck load events 

have a steep slope as in Figure 6-9, and will converge to a maximum moment quickly. This 

indicates that the characteristic load will converge quickly. From Figure 6-9, it can be seen 

that 2 Truck and 3 truck load events will converge below 30000KNm. 
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Figure 6-11: Type of Multiple Truck Load Events vs. Moment for Free Flow 

 

Figure 6-12 below show the data points for the 1680 max moment per day free flow 

simulation. It can be seen that when the data is extrapolated with a linear trendline for the top 

30% of the data, the characteristic value of 33500KNm is quite large and the extrapolation 

does not seem to match the trend in the data. I then extrapolated the top 5% of the data, which 

matches to final trend of the data. The characteristic value of 27500KNm is more like what is 

expected for a maximum of a 3 Truck load event. This is 25% less than the average 

characteristic value in Figure 6-7 of the Base Model for congested traffic. 
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Figure 6-12: Free Flow Extrapolation 1680 days 
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7 Sensitivity Analysis 

7.1 Parameters and layout 

There are 10 IDM parameters that can be altered to change the configuration of the traffic. 

This work focuses on 6 parameters, S1, T, δbias, P, S1 and δthr, because of their relevance to 

lane changing and to headway distances. The aim of this work is to find out which parameters 

make the most difference to the max moment on the bridge and why. Each parameter is 

changed by -50%, -25%, +25% and +50%, while leaving all other parameters at the base 

model values. 

7.2 S1 – Elastic jam distance 

S1 is the elastic jam distance, and affects the desired distance between vehicles ( ) 

as seen in Equation 4-2. 

 

Equation 4-2: Desired distance to vehicle directly in front 

 

I changed the S1 factor by -50%, -25%, +25% and +50%, ran each simulation 5 times and 

plotted the average data on the standard extremal variate graph for the Gumbel distribution. I 

then extrapolated the top 30% of each data set as discussed in Chapter 6 and plotted them 

below in Figure 7-1. It is quite evident from Figure 7-1 that a decrease in S1 results in an 

increase in the characteristic moment on the bridge. Likewise when S1 is increased, the 

characteristic moment decreases. Also included in Figure 7-1 is an error bar showing + and – 

1 standard deviation of the Base Model as discussed in Chapter 6. This shows the magnitude 

of the change in the characteristic moment due to S1 compared to the Base Model. 
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Figure 7-1: s1 Extrapolation of 168 day normally distributed IDM 

 

However, it is noted that a decrease in S1 by 25% has no effect on the characteristic moment 

and an increase of 25% has a large effect on the characteristic moment. This implies that they 

extrapolation is not very accurate and requires more data points. In order to get a more 

accurate extrapolation, I decided to simulate the change in S1 with 168 days of constant IDM 

parameters and also with 840 days of normally distributed IDM parameters in a similar 

manner to the Base Model in chapter 6. The resultant graphs are plotted in Figure 7-2 and 

Figure 7-3 respectively. 
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Figure 7-2: s1 Extrapolation of 168 day constant IDM  

 

Figure 7-3: s1 Extrapolation of 840 day normally distributed IDM 
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Figure 7-2 and Figure 7-3 are very similar except for +25% S1.  In Figure 7-2, the +25% S1 

characteristic value is 32500KNm which is similar to that of Figure 7-1 but quite different to 

the characteristic value of the 840 day simulation in Figure 7-3 of 36400KNm. Due to the 

much higher number of data points in Figure 7-3, 840 vs. 168, Figure 7-3 is presumed to have 

a better extrapolation of the characteristic value. The characteristic values of both +50% S1 

and +25% S1 are within 1 standard deviation of the characteristic value of the normally 

distributed Base Model. 

7.2.1 50% S1 

A decrease of 50% in S1 from 20m to 10m has caused the characteristic moment to change 

from 36400KNm to 44700KNm, which is an increase of 23%. This is the most significant 

increase out of all the parameters. However, the percentage increase in the characteristic 

moment is only half that of the decrease in S1. As shown in Figure 7-6, the LC rate increases 

by 5% from 2823 LC/hr/km to 2966 LC/hr/km while the density decreases from 80.20 

veh/km to 77.73 veh/km. This decrease in density is only 2.47 veh/km or 3% of the base 

level, which equates to 0.247 veh/100m and therefore negligible to the load affect on the 

bridge. 

The maximum moment from the -50% S1 normally distributed IDM parameters simulations is 

34478KNm and is a 5-truck load event. As with in the base model, 6-truck and 7-truck load 

events did occur but did not govern. A note of interest from Figure 7-4 is that the same 5 

trucks make up the maximum moment for the Base Model in Figure 6-6, but are in a different 

configuration and most importantly, the headway distances in lane 1 are smaller due to S1 

being decreased from 20m to 10m. The reduction in the headway distance is the reason why 

the moment has increased. The dimensions of the headway distances given in Figure 7-4 are 

in metres. 
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Figure 7-4: 5-Truck load event Configuration for Max Moment for -50% S1 of 34478KNm 

 

As discussed above, the maximum load event is a 5 Truck event as shown in Figure 7-4. 

Figure 7-5 below, shows each load event type plotted with respect to the standard extremal 

variate of the Gumbel distribution for 840 Days of normally distributed simulated traffic. It 

can be seen from Figure 7-5, that 1 Truck, 2 Truck, 3 Truck and 4 truck load events have a 

steeper slope than that of 5 Truck and 6 Truck load events, indicating that they will converge 

at a maximum moment much sooner than 5 Truck and 6 Truck load events. 1 Truck, 2 Truck, 

3 Truck and 4 truck load events have the most data points, 19% of the total load events each. 

The 5 Truck load events have nearly as much with 18%. The 6 Truck load events have much 

less data points, 5.5% and the 7 truck load events have only 0.5% of the total load events. It is 

because of these small percentages that a 6 Truck load event or a 7 truck load event does not 

govern. Only 1 8 Truck load event was recorded. 6 Truck, 7 Truck and 8 Truck load events 

do have the potential to govern but a much greater amount of data must be simulated in order 

for heavy 6 Truck, 7 Truck and 8 Truck load events to occur.  

By comparing Figure 6-9, the type of load events vs. moment for the Base Model, against 

Figure 7-5, it can be seen that the 1 Truck and 2 Truck lines are nearly the exact same, while 

the 3 Truck, 4 Truck, 5 Truck and 6 Truck slopes slacken out more on Figure 7-5, which 

leads to greater moment. This makes sense as the decreased headway distance between 

vehicles makes little or no difference to 1 Truck or 2 Truck load events but does affect 3 

Truck, 4 Truck, 5 Truck and 6 Truck load events by allowing the vehicles to drive closer 

together which means more vehicles on the bridge, therefore greater bending moment on the 

bridge.  
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Figure 7-5: Type of Multiple Truck load Event vs. Moment -50% S1  

 

7.2.2 Lane Change ratio and Density 

As S1 is increased, the density of vehicles (veh/km) increases and the lane change ratio (lane 

changes/hr/km) decreases, as shown in Figure 7-6. The density increases from 77.7 veh/km 

for -50% S1 to 88 veh/km for +50% S1. This is an increase of 10.3 veh/km or 13%, which is 

the greatest change in the density of all the parameters tested. The lane change rate decreases 

from 2966 LC/hr/km for -50% S1 to 2515 LC/hr/km for +50% S1. This is a decrease of 451 

LC/hr/km or 15% which is also the greatest change in the lane change rate of all the 

parameters analysed. These changes in the lane change rate of +15% and in the density of -

13% are quite small in comparison to the fact that S1 is changed across a 100% range. It is 

strange that an increase in the lane change rate corresponds with a decrease in the density. 

However this is consistent across all of the parameters analysed. 

    
 

      44 
 



 

Figure 7-6:  Lane Change rate vs. Density for changes to S1 

 

7.3 Desired Headway Time (T), Outside Lane Bias (δbias) and Politeness factor (P) 

The same procedures and analysis techniques are used for the following parameters as have 

been used for S1. In an effort to reduce the length of this dissertation, the results of the 

following parameters are summarised and presented below.  

T is the Desired Headway Time between vehicles and effects the desired headway distance 

( ) in Equation 4-2 below. T is multiplied by the current velocity (v) of the 

vehicle. It is clear to see that at low velocities, the effect T has on the desired headway 

distance is reduced. It is for this reason that s1 has a bigger effect on the desired headway 

distance in congested traffic than T. 

 

Equation 4-2: Desired distance to vehicle directly in front 
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δbias is the Outside Lane Bias factor and is used in the ‘incentive criterion’ for lane changes. 

δbias is added to the Lane Change Threshold (δthr) if a vehicle is changing from the outside 

lane to the inside lane, and is subtracted from the Lane Change Threshold (δthr) if the vehicle 

is changing from the inside lane to the outside lane. This is shown below in Equation 4-4 and 

Equation 4-5. 

 

Equation 7-1: Incentive Criterion - Right to Left  

 

Equation 7-2: Incentive Criterion – Left to Right 

P is the Politeness factor and is also used in the ‘incentive criterion’ for lane changes and is 

shown above in Equation 4-4 and Equation 4-5. P is multiplied to the disadvantage of the 

vehicles directly behind the vehicle considering changing lane. This weights the disadvantage 

to others with respect to the vehicles own advantage. 

7.3.1 Desired Headway Time (T) 

T behaves as would be expected. As T is increased, the moment in the bridge decreases. 

Likewise, as T is decreased, the moment in the bridge increases. When T is changed by 

+50%, the characteristic moment reduces by 3.6%. When T is changed by -50%, the 

characteristic moment increases by 7.2%. This equates to an overall change in the 

characteristic moment of 10.8% for a 100% change in T. Also the greatest change in the 

characteristic moment is just outside 1 standard deviation of the Base Model characteristic 

value as show below in Figure 7-7. 
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Figure 7-7: T Extrapolation of 840 Day normally distributed IDM 

 

The lane change rate for T decreases by 7.4% from 2900 LC/hr/km to 2685 LC/hr/km 

between -50% T and +50% T. The density increases by 0.5% from 76.6 veh/km to 81 veh/km 

between -50% T and +50% T. This change in density relates to 0.04 veh/100m and therefore 

has no effect on the load on the bridge. 

It can be seen clearly that changing T does affect the characteristic moment on the bridge but 

a change of -50% needs to be made to T to change the characteristic moment by +7.2%. The 

change in the characteristic moment due to -50%T, +7.2%, is just outside 1 standard 

deviation of the variability of the IDM parameters being distributed across a normal 

distribution, +6.4%. Therefore a change in T affects the characteristic moment only slightly 

more than the distribution of the IDM parameters across a normal distribution does. It can 

also be noted that unlike in Figure 7-3 for S1, all the data points are quite near each other in 

Figure 7-7, which adds strength to the argument that T does not affect the characteristic 

moment significantly when traffic is congested. 
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7.3.2 Outside Lane Bias (δbias) 

Figure 7-8 below shows the extrapolation of δbias as it is increased and decreased by 25% and 

50%. When δbias is changed by -25%, the characteristic moment decreases by 3.6%. When 

δbias is changed by +50%, the characteristic value increases by 5.2%. This is a total change 

of 8.8% across a 100% change in δbias and as before with T, is within 1 standard deviation of 

the Base Model Characteristic value. Changes of -25% δbias and +50% δbias do not change 

the characteristic moment. It can also be seen in Figure 7-8 that all the data points are quite 

near each other like in Figure 7-7 for T. This indicates that like T, δbias only has a small effect 

on the characteristic moment for congested traffic. A decrease in the lane change rate of only 

0.5% and an increase in the density of only 0.35% across a 100% change in δbias strengthens 

the above statement. 

 

Figure 7-8: δbias Extrapolation of 840 Day normally distributed IDM 
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7.3.3 Politeness factor (P) 

Like T and δbias previously, changing P does affect the characteristic moment but not in a 

linear manner. The minimum characteristic value, 5.2% less than the base value, is when P is 

increased by 50%. The maximum characteristic value, 3.8% greater than the base value 

occurs when P is increased by 25%. This implies that increasing P, i.e. increasing the 

politeness of the drivers, can affect the moment on the bridge in either a negative or a positive 

manner. 

When P is changed from -50% to +50% of the base value, the lane change rate decreases 

from 2840 LC/hr/km to 2788 LC/hr/km. That is a decrease of only 2%. As the drivers 

become more polite, less lane changes take place but only marginally less. This is interesting, 

because like δbias, P is related to lane changes but has barely any effect on the lane change 

rate in congested traffic, much like δbias.  

The density changes from 80.3 veh/km to 80.17 veh/km when P is changed from -50% to 

+50% of the base value. This is a decrease of 0.2% which is negligible. P shares other 

similarities with T and δbias as can be seen below in Figure 7-9. Firstly all the data points are 

very close together for all the increments of P and secondly the maximum and minimum 

characteristic values are within 1 standard deviation of the characteristic value from the Base 

Model. P does have an effect on the characteristic moment of the bridge but it is only a small 

effect and is within a standard deviation of the base value, therefore it has no more effect on 

the characteristic moment than the distribution of the parameters across a normal distribution 

does.  
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Figure 7-9: P Extrapolation of 840 Day normally distributed IDM 

 

7.4 Minimum Jam Distance (S0) 

S0 affects the desired headway distance between vehicles ( ) as shown in Equation 

4-2.  

 

Equation 4-2: Desired distance to vehicle directly in front 

Because S0 is small (1m) compared to S1 (20m) and T(v) (1.5*8), it has very little effect on 

the desired distance between vehicles and therefore the maximum moment on the bridge. The 

change in the lane change rate between -50% S0 and +50% S0 is -1%. The density is changed 

by +0.3% for the same increments. Both the change in the lane change rate and the change in 

density are negligible. When S0 is changed by -50%, the characteristic moment changes by 
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+3%. The maximum negative change to the characteristic value, -0.8%, is caused by changed 

S0 by +25%. This is a total of 3.8% of a change in the characteristic moment while S0 is varied 

by 100%. As the minimum jam distance is decreased, the characteristic moment increases 

and as the minimum jam distance increases, the characteristic moment decreases. This makes 

sense but the magnitude by which a change in S0 effects the characteristic moment is quite 

small. Once again, as with T, δbias and P, the maximum changes to the characteristic 

moment due to changes in S0, are within 1 standard deviation of the Base Model 

characteristic moment and all the data points are very close to each other. Therefore S0 does 

not significantly effect the characteristic moment on the bridge for congested traffic. 

 

 

Figure 7-10: S0 Extrapolation of 840 Day normally distributed IDM 
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7.5 Lane Change Threshold (δthr) 

δthr is a factor in the ‘Incentive Criterion’ for lane changes and is included in the equation to 

prevent lane changes taking place that are only of marginal advantage to the driver i.e. lane 

hopping. The ‘Incentive Criterion’ is shown below in Equation 4-4 and Equation 4-5. 

 

Equation 7-3: Incentive Criterion - Right to Left  

 

Equation 7-4: Incentive Criterion – Left to Right 

As can be seen in Figure 7-11, when δthr is increased by 50%, the characteristic moment 

changes by +3.6% and when δthr is decreased by 50%, the characteristic moment decreases by 

2.2%. This equates to a total change of 5.8% when δthr is varied by 100%. Like the previous 

parameters, the maximum changes to the characteristic moment are within 1 standard 

deviation of the characteristic moment from the Base Model and all the data points are very 

close to each other. There is no change in the lane change rate or in the density when δthr is 

varied. This is significant as δthr is included to stop lane hopping. From this it can be said that 

δthr has little or no effect on the maximum moment on the bridge for congested traffic. 
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Figure 7-11: δthr Extrapolation of 840 Day normally distributed IDM 
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8 Conclusions 

8.1 Sensitivity Analysis 

A sensitivity analysis was carried out on a 2 lane, 100m long, simply supported bridge. 6 

IDM and MOBIL parameters were analysed for increases and decreases of 25% and 50%. A 

Base Model was set and analysed using both constant parameters and normally distributed 

parameters. It was found that the normally distributed parameters caused each of the 10 base 

simulations to yield slightly different characteristic values, even though the parameters were 

set at the same value for all 10. This variation in the characteristic values proved to be 

significant, with a minimum variation from the mean of -9.3% and a maximum variation 

from the mean of +11.2%. This resulted in a standard deviation of + or - 6.4% of the mean 

which is greater than the variations in the characteristic values due to the variations of the 

parameters δbias, P, S0 and δthr by + and – 25% and 50%. 

 The amount of days of data used versus the accuracy of the extrapolation to the 1000 year 

return period was briefly studied. It was found that more data means more accuracy in 

predicting a characteristic value. The extrapolations for 168 day simulations were far less 

organised than the extrapolations for 1680 day simulations. 

It was shown that T, δbias and P, do affect the characteristic value when changed but the 

percentage at which they affect the characteristic value compared to the percentage that they 

are changed is quite small. For instance, a decrease of -50% in T, results in an increase in the 

characteristic moment of +7.2%. This is only 14.4% of the change in T and only +0.8% more 

than +1 standard deviation of the Base Model. The characteristic value due to -50% T is the 

only characteristic value from all the variations of T, δbias and P that is greater than 1 standard 

deviation of the Base Model. It was also noted that P and δbias have a negligible effect on the 

lane change rate in congested traffic. This is significant as both P and δbias are included in the 

‘incentive criterion’ to increase or decrease lane changes. A decrease of -50% in T, changes 

the lane change rate by only 3% which is also negligible compared to the decrease in T. 

The parameters S0 and δthr are shown to effect the characteristic moment on the bridge less 

than T, δbias and P. This is interesting as S0 is the minimum jam distance in congested traffic. 

It was shown that because the traffic analysed was travelling at a speed of 2m/s and not at a 

stop, S0 has a negligible effect on the moment on the bridge. Changing δthr by + and - 50% 
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has no effect on either the lane change rate or density. This is a significant discovery because 

δthr is included in the ‘incentive criterion’ to decrease random lane changes. The effect S0 has 

on the lane change rate and density is also negligible. 

The Elastic Jam Distance (S1) was found to have the most significant effect on the 

characteristic moment on the bridge in congested traffic. A change of -50% in S1, results in a 

change in the characteristic moment of +23%, far greater than 1 standard deviation of the 

characteristic value from the Base Model. A change of -25% in S1 also resulted in an 

increase, +9.9%, in the characteristic moment, beyond the range of 1 standard deviation of 

the Base Model. Increasing S1 did not effect the characteristic moment beyond 1 standard 

deviation of the Base Model. It should be noted that this work did not carry out a study to see 

how realistic an S1 value of 10m or 30m is compared with measured traffic. This work 

concentrated on changing each parameter by the same percentage in order to be able to 

compare results. 

From this work it is apparent that the variability of the parameters across the normal 

distribution has more effect on the characteristic value than most of the parameters.  

• S1 has a greatest effect on the characteristic moment on the bridge for congested 

traffic but even still must be changed by a large percentage in order to induce a 

significant change in the characteristic moment. 

• T has a small effect on the characteristic moment on the bridge for congested traffic 

but it is negligible. 

• δbias and P have a small effect on the characteristic moment on the bridge for 

congested traffic but it is less than 1 standard deviation of the base model. This effect 

on the characteristic moment is negligible and therefore δbias and P could be neglected. 

• S0 and δthr have barely any effect on the characteristic moment on the bridge for 

congested traffic and so can be neglected. 

Considering that long span bridges are designed for the worse load that may occur in its 

lifetime, it is reasonable to neglect the parameters that do not affect the characteristic moment 

significantly. These parameters seek to model traffic as realistically as possible but in doing 

so add unnecessary complexity and variability to the process of traffic microsimulation 

loading for long span bridges. By excluding the parameters that do not contribute to the 
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characteristic moment, traffic micosimulation for long span bridges can be made simpler and 

more user friendly. 

8.2 Further Research 

Throughout this work various opportunities for further research have presented themselves 

and have remained unexplored. These are outlined below. 

The traffic analysed in this study was congested traffic at a speed of 2m/s but did not come to 

a halt and induce the ‘accordion effect’ at any stage during the simulations. An interesting 

research opportunity would be to double to flow of traffic to induce such effects and also to 

run the traffic in free flow to see if the results from this study were consistent across different 

traffic flows. 

To fully realise what effect δbias, P, S0 and δthr have on the characteristic moment on a long 

span bridge, it would be of interest to exclude them from the traffic microsimulation model 

and simulate the traffic as in this work to see what effect, if any this has on the characteristic 

moment of the bridge. 
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