
MATLAB R© / R Reference
March 3, 2009

David Hiebeler
Dept. of Mathematics and Statistics

University of Maine
Orono, ME 04469-5752

http://www.math.umaine.edu/faculty/hiebeler

I wrote the first version of this reference during the Spring 2007 semester, as I learned R while teaching
my course “MAT400, Modeling & Simulation” at the University of Maine. The course covers population
and epidemiological modeling, including deterministic and stochastic models in discrete and continuous
time, along with spatial models. Half of the class meetings are in a regular classroom, and half are in
a computer lab where students work through modeling & simulation exercises. When I taught earlier
versions of the course, it was based on Matlab only. In Spring 2007, some biology graduate students in
the class who had learned R in statistics courses asked if they could use R in my class as well, and I said
yes. My colleague Bill Halteman was a great help as I frantically learned R to stay ahead of the class.
As I went, every time I learned how to do something in R for the course, I added it to this reference, so
that I wouldn’t forget it later. Some items took a huge amount of time searching for a simple way to do
what I wanted, but at the end of the semester, I was pleasantly surprised that almost everything I do
in Matlab had an equivalent in R. I was also inspired to do this after seeing the “R for Octave Users”
reference written by Robin Hankin. I’ve continued to add to the document, with many additions based
on topics that came up while teaching courses on Advanced Linear Algebra and Numerical Analysis.

This reference is organized into general categories. There is also a Matlab index and an R index at
the end, which should make it easy to look up a command you know in one of the languages and learn
how to do it in the other (or if you’re trying to read code in whichever language is unfamiliar to you,
allow you to translate back to the one you are more familiar with). The index entries refer to the item
numbers in the first column of the reference document, rather than page numbers.

Any corrections, suggested improvements, or even just notification that the reference has been useful
will be appreciated. I hope all the time I spent on this will prove useful for others in addition to myself
and my students. Note that sometimes I don’t necessarily do things in what you may consider the “best”
way in a particular language; I often tried to do things in a similar way in both languages. But if you
believe you have a “better” way (either simpler, or more computationally efficient) to do something, feel
free to let me know.

Acknowledgements: Thanks to Alan Cobo-Lewis and Isaac Michaud for correcting some errors;
and Stephen Eglen, David Khabie-Zeitoune, Lee Pang, Manas A. Pathak, and Corey Yanofsky for con-
tributions.

Permission is granted to make and distribute verbatim copies of this manual provided this permission
notice is preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, un-
der the above conditions for modified versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.

Copyright c©2007–2009 David Hiebeler

1

D. Hiebeler, Matlab / R Reference 2

Contents

1 Online help 3

2 Entering/building/indexing matrices 4
2.1 Cell arrays and lists . 6
2.2 Structs and data frames . 6

3 Computations 7
3.1 Basic computations . 7
3.2 Complex numbers . 7
3.3 Matrix/vector computations . 8
3.4 Root-finding . 13
3.5 Function optimization/minimization . 14
3.6 Numerical integration / quadrature . 14
3.7 Curve fitting . 15

4 Conditionals, control structure, loops 16

5 Functions, ODEs 19

6 Probability and random values 21

7 Graphics 25
7.1 Various types of plotting . 25
7.2 Printing/saving graphics . 32
7.3 Animating cellular automata / lattice simulations . 33

8 Working with files 34

9 Miscellaneous 35
9.1 Variables . 35
9.2 Strings and Misc. 36

10 Spatial Modeling 39

Index of MATLAB commands and concepts 40

Index of R commands and concepts 44

D. Hiebeler, Matlab / R Reference 3

1 Online help

No. Description Matlab R

1 Show help for a function (e.g.
sqrt)

help sqrt, or helpwin sqrt to see
it in a separate window

help(sqrt) or ?sqrt

2 Show help for a built-in key-
word (e.g. for)

help for help(’for’) or ?’for’

3 General list of many help top-
ics

help library() to see available libraries,
or library(help=’base’) for very
long list of stuff in base package which
you can see help for

4 Explore main documentation
in browser

doc or helpbrowser (previously it
was helpdesk, which is now being
phased out)

help.start()

5 Search documentation for
keyword or partial keyword
(e.g. functions which refer to
“binomial”)

lookfor binomial help.search(’binomial’)

D. Hiebeler, Matlab / R Reference 4

2 Entering/building/indexing matrices

No. Description Matlab R

6 Enter a row vector ~v =
[

1 2 3 4
]

v=[1 2 3 4] v=c(1,2,3,4) or alternatively
v=scan() then enter “1 2 3 4” and
press Enter twice (the blank line
terminates input)

7 Enter a column vector

1
2
3
4

[1; 2; 3; 4] c(1,2,3,4)

(R does not distinguish between row
and column vectors.)

8 Enter a matrix

[

1 2 3
4 5 6

]

[1 2 3 ; 4 5 6] To enter values by row:
matrix(c(1,2,3,4,5,6), nrow=2,

byrow=TRUE) To enter values by
column: matrix(c(1,4,2,5,3,6),

nrow=2)

9 Access an element of vector v v(3) v[3]

10 Access an element of matrix
A

A(2,3) A[2,3]

11 Access an element of matrix
A using a single index: in-
dices count down the first col-
umn, then down the second
column, etc.

A(5) A[5]

12 Build the vector [2 3 4 5 6 7] 2:7 2:7

13 Build the vector [7 6 5 4 3 2] 7:-1:2 7:2

14 Build the vector [2 5 8 11 14] 2:3:14 seq(2,14,3)

15 Build a vector containing
n equally-spaced values be-
tween a and b inclusive

linspace(a,b,n) seq(a,b,length.out=n) or just
seq(a,b,len=n)

16 Build a vector of length k
containing all zeros

zeros(k,1) (for a column vector) or
zeros(1,k) (for a row vector)

rep(0,k)

17 Build a vector of length k
containing the value j in all
positions

j*ones(k,1) (for a column vector)
or j*ones(1,k) (for a row vector)

rep(j,k)

18 Build an m×n matrix of zeros zeros(m,n) matrix(0,nrow=m,ncol=n) or just
matrix(0,m,n)

19 Build an m × n matrix con-
taining j in all positions

j*ones(m,n) matrix(j,nrow=m,ncol=n) or just
matrix(j,m,n)

20 n × n identity matrix In eye(n) diag(n)

21 Build diagonal matrix A us-
ing elements of vector v as di-
agonal entries

diag(v) diag(v,nrow=length(v)) (Note: if
you are sure the length of vector v is 2
or more, you can simply say diag(v).)

22 Extract diagonal elements of
matrix A

v=diag(A) v=diag(A)

23 “Glue” two matrices a1 and
a2 (with the same number of
rows) side-by-side

[a1 a2] cbind(a1,a2)

24 “Stack” two matrices a1 and
a2 (with the same number of
columns) on top of each other

[a1; a2] rbind(a1,a2)

D. Hiebeler, Matlab / R Reference 5

No. Description Matlab R

25 Reverse the order of elements
in vector v

v(end:-1:1) rev(v)

26 Column 2 of matrix A A(:,2) A[,2] Note: that gives the result as a
vector. To make the result a m×1 ma-
trix instead, do A[,2,drop=FALSE]

27 Row 7 of matrix A A(7,:) A[7,] Note: that gives the result as a
vector. To make the result a 1×n ma-
trix instead, do A[7,,drop=FALSE]

28 All elements of A as a vector,
column-by-column

A(:) (gives a column vector) c(A)

29 Rows 2–4, columns 6–10 of A
(this is a 3 × 5 matrix)

A(2:4,6:10) A[2:4,6:10]

30 A 3 × 2 matrix consisting of
rows 7, 7, and 6 and columns
2 and 1 of A (in that order)

A([7 7 6], [2 1]) A[c(7,7,6),c(2,1)]

31 Given a single index ind into
an m× n matrix A, compute
the row r and column c of
that position (also works if
ind is a vector)

[r,c] = ind2sub(size(A), ind) r = ((ind-1) %% m) + 1

c = floor((ind-1) / m) + 1

32 Given the row r and column
c of an element of an m × n
matrix A, compute the single
index ind which can be used
to access that element of A
(also works if r and c are vec-
tors)

ind = sub2ind(size(A), r, c) ind = (c-1)*m + r

33 Given equal-sized vectors r
and c (each of length k), set
elements in rows (given by r)
and columns (given by c) of
matrix A equal to 12. That
is, k elements of A will be
modified.

inds = sub2ind(size(A),r,c);

A(inds) = 12;

inds = cbind(r,c)

A[inds] = 12

34 Truncate vector v, keeping
only the first 10 elements

v = v(1:10) v = v[1:10], or length(v) = 10

also works
35 Reshape matrix A, making it

an m × n matrix with ele-
ments taken columnwise from
the original A (which must
have mn elements)

A = reshape(A,m,n) dim(A) = c(m,n)

36 Extract the lower-triangular
portion of matrix A

L = tril(A) L = A; L[upper.tri(L)]=0

37 Extract the upper-triangular
portion of matrix A

U = triu(A) U = A; U[lower.tri(U)]=0

38 Enter n×n Hilbert matrix H
where Hij = 1/(i + j − 1)

hilb(n) Hilbert(n), but this is part of the
Matrix package which you’ll need to
install (see item 295 for how to in-
stall/load packages).

39 Enter an n-dimensional array,
e.g. a 3×4×2 array with the
values 1 through 24

reshape(1:24, 3, 4, 2) or
reshape(1:24, [3 4 2])

array(1:24, c(3,4,2)) (Note that
a matrix is 2-D, i.e. rows and
columns, while an array is more gen-
erally N -D)

D. Hiebeler, Matlab / R Reference 6

2.1 Cell arrays and lists

No. Description Matlab R

40 Build a vector v of length n,
capable of containing differ-
ent data types in different el-
ements (called a cell array in
Matlab, and a list in R)

v = cell(1,n) In general,
cell(m,n) makes an m × n cell
array. Then you can do e.g.:

v{1} = 12

v{2} = ’hi there’

v{3} = rand(3)

v = vector(’list’,n) Then you
can do e.g.:

v[[1]] = 12

v[[2]] = ’hi there’

v[[3]] = matrix(runif(9),3)

41 Extract the ith element of a
cell/list vector v

w = v{i}

If you use regular indexing, i.e. w

= v(i), then w will be a 1 × 1 cell
matrix containing the contents of the
ith element of v.

w = v[[i]]

If you use regular indexing, i.e. w =

v[i], then w will be a list of length 1
containing the contents of the ith ele-
ment of v.

42 Set the name of the ith ele-
ment in a list.

(Matlab does not have names asso-
ciated with elements of cell arrays.)

names(v)[3] = ’myrandmatrix’

Use names(v) to see all names, and
names(v)=NULL to clear all names.

2.2 Structs and data frames

No. Description Matlab R

43 Create a matrix-like object
with different named columns
(a struct in Matlab, or a
data frame in R)

avals=2*ones(1,6);

yvals=6:-1:1; v=[1 5 3 2 3 7];

d=struct(’a’,avals,

’yy’, yyvals, ’fac’, v);

v=c(1,5,3,2,3,7); d=data.frame(

cbind(a=2, yy=6:1), v)

Note that I (surprisingly) don’t use R for statistics, and therefore have very little experience with data
frames (and also very little with Matlab structs). I will try to add more to this section later on.

D. Hiebeler, Matlab / R Reference 7

3 Computations

3.1 Basic computations

No. Description Matlab R

44 a + b, a − b, ab, a/b a+b, a-b, a*b, a/b a+b, a-b, a*b, a/b
45

√
a sqrt(a) sqrt(a)

46 ab a^b a^b

47 |a| (note: for complex ar-
guments, this computes the
modulus)

abs(a) abs(a)

48 ea exp(a) exp(a)

49 ln(a) log(a) log(a)

50 log2(a), log10(a) log2(a), log10(a) log2(a), log10(a)
51 sin(a), cos(a), tan(a) sin(a), cos(a), tan(a) sin(a), cos(a), tan(a)

52 sin−1(a), cos−1(a), tan−1(a) asin(a), acos(a), atan(a) asin(a), acos(a), atan(a)
53 sinh(a), cosh(a), tanh(a) sinh(a), cosh(a), tanh(a) sinh(a), cosh(a), tanh(a)

54 sinh−1(a), cosh−1(a),
tanh−1(a)

asinh(a), acosh(a), atanh(a) asinh(a), acosh(a), atanh(a)

55 n MOD k (modulo arith-
metic)

mod(n,k) n %% k

56 Round to nearest integer round(x) round(x) (Note: R uses IEC 60559
standard, rounding 5 to the even digit
— so e.g. round(0.5) gives 0, not 1.)

57 Round down to next lowest
integer

floor(x) floor(x)

58 Round up to next largest in-
teger

ceil(x) ceiling(x)

59 Sign of x (+1, 0, or -1) sign(x) (Note: for complex values,
this computes x/abs(x).)

sign(x) (Does not work with com-
plex values)

60 Error function erf(x) =

(2/
√

π)
∫ x

0
e−t2dt

erf(x) 2*pnorm(x*sqrt(2))-1

61 Complementary er-
ror function cerf(x) =

(2/
√

π)
∫

∞

x
e−t2dt = 1-erf(x)

erfc(x) 2*pnorm(x*sqrt(2),lower=FALSE)

62 Inverse error function erfinv(x) qnorm((1+x)/2)/sqrt(2)

63 Inverse complementary error
function

erfcinv(x) qnorm(x/2,lower=FALSE)/sqrt(2)

Note: the various functions above (logarithm, exponential, trig, abs, and rounding functions) all work
with vectors and matrices, applying the function to each element, as well as with scalars.

3.2 Complex numbers

No. Description Matlab R

64 Enter a complex number 1+2i 1+2i

65 Modulus (magnitude) abs(z) abs(z) or Mod(z)
66 Argument (angle) angle(z) Arg(z)

67 Complex conjugate conj(z) Conj(z)

68 Real part of z real(z) Re(z)

69 Imaginary part of z imag(z) Im(z)

D. Hiebeler, Matlab / R Reference 8

3.3 Matrix/vector computations

No. Description Matlab R

70 Matrix multiplication AB A * B A %*% B

71 Element-by-element multipli-
cation of A and B

A .* B A * B

72 Transpose of a matrix, AT A’ (This is actually the complex con-
jugate (i.e. Hermitian) transpose;
use A.’ for the non-conjugate trans-
pose if you like; they are equivalent
for real matrices.)

t(A) for transpose, or Conj(t(A)) for
conjugate (Hermitian) transpose

73 Solve A~x = ~b A\b Warning: if there is no solution,
Matlab gives you a least-squares
“best fit.” If there are many solu-
tions, Matlab just gives you one of
them.

solve(A,b) Warning: this only works
with square invertible matrices.

74 Reduced echelon form of A rref(A) R does not have a function to do this
75 Compute inverse of A inv(A) solve(A)

76 Compute AB−1 A/B A %*% solve(B)

77 Element-by-element division
of A and B

A ./ B A / B

78 Compute A−1B A\B solve(A,B)

79 Square the matrix A A^2 A %*% A

80 Raise matrix A to the kth

power
A^k (No easy way to do this in R

other than repeated multiplication
A %*% A %*% A...)

81 Raise each element of A to
the kth power

A.^k A^k

82 Rank of matrix A rank(A) qr(A)$rank

83 Set w to be a vector of eigen-
values of A, and V a matrix
containing the corresponding
eigenvectors

[V,D]=eig(A) and then w=diag(D)

since Matlab returns the eigenval-
ues on the diagonal of D

tmp=eigen(A); w=tmp$values;

V=tmp$vectors

84 Permuted LU factorization of
a matrix

[L,U,P]=lu(A) then the matrices
satisfy PA = LU . Note that this
works even with non-square matrices

tmp=expand(lu(Matrix(A)));

L=tmp$L; U=tmp$U; P=tmp$P then
the matrices satisfy A = PLU , i.e.
P−1A = LU . Note that the lu and
expand functions are part of the Ma-
trix package (see item 295 for how to
install/load packages). Also note that
this doesn’t seem to work correctly
with non-square matrices. L, U, and
P will be of class Matrix rather than
class matrix; to make them the latter,
instead do L=as.matrix(tmp$L),
U=as.matrix(tmp$U), and
P=as.matrix(tmp$P) above.

D. Hiebeler, Matlab / R Reference 9

No. Description Matlab R

85 Singular-value decomposi-
tion: given m × n matrix
A with rank r, find m × r
matrix P with orthonormal
columns, diagonal r × r
matrix S, and r × n matrix
QT with orthonormal rows
so that PSQT = A

[P,S,Q]=svd(A,’econ’) tmp=svd(A); U=tmp$u; V=tmp$v;

S=diag(tmp$d)

86 Schur decomposi-
tion of square matrix,
A = QTQH = QTQ−1 where
Q is unitary (i.e. QHQ = I)
and T is upper triangular;
QH = QT is the Hermitian
(conjugate) transpose

[Q,T]=schur(A) tmp=Schur(Matrix(A)); T=tmp@T;

Q=tmp@Q Note that Schur is part of
the Matrix package (see item 295 for
how to install/load packages). T and
Q will be of class Matrix rather than
class matrix; to make them the latter,
instead do T=as.matrix(tmp@T) and
Q=as.matrix(tmp@Q) above.

87 Cholesky factorization of a
square, symmetric, positive
definite matrix A = RT R,
where R is upper-triangular

R = chol(A) R = chol(A) Note that chol is part
of the Matrix package (see item 295
for how to install/load packages).

88 QR factorization of matrix A,
where Q is orthogonal (sat-
isfying QQT = I) and R is
upper-triangular

[Q,R]=qr(A) satisfying QR = A, or
[Q,R,E]=qr(A) to do permuted QR
factorization satisfying AE = QR

z=qr(A); Q=qr.Q(z); R=qr.R(z);

E=diag(n)[,z$pivot] (where n is
the number of columns in A) gives
permuted QR factorization satisfying
AE = QR

89 Vector norms norm(v,1) for 1-norm ‖~v‖1,
norm(v,2) for Euclidean norm
‖~v‖2, norm(v,inf) for infinity-norm
‖~v‖∞, and norm(v,p) for p-norm

‖~v‖p = (
∑

|vi|p)1/p

R does not have a norm func-
tion for vectors; only one for
matrices. But the following will
work: norm(matrix(v),’1’) for
1-norm ‖~v‖1, norm(matrix(v),’i’)

for infinity-norm ‖~v‖∞, and
sum(abs(v)^p)^(1/p) for p-norm

‖~v‖p = (
∑ |vi|p)1/p

90 Matrix norms norm(A,1) for 1-norm ‖A‖1,
norm(A) for 2-norm ‖A‖2,
norm(A,inf) for infinity-norm
‖A‖∞, and norm(A,’fro’) for

Frobenius norm
(
∑

i(A
T A)ii

)1/2

norm(A,’1’) for 1-norm ‖A‖1,
max(svd(A)$d) for 2-norm ‖A‖2,
norm(A,’i’) for infinity-norm ‖A‖∞,
and norm(A,’f’) for Frobenius norm
(
∑

i(A
T A)ii

)1/2

91 Condition number cond(A) =
‖A‖1‖A−1‖1 of A, using 1-
norm

cond(A,1) (Note: Matlab also has
a function rcond(A) which computes
reciprocal condition estimator using
the 1-norm)

1/rcond(A,’1’)

92 Condition number cond(A) =
‖A‖2‖A−1‖2 of A, using 2-
norm

cond(A,2) kappa(A, exact=TRUE) (leave out
the “exact=TRUE” for an esti-
mate)

93 Condition number cond(A) =
‖A‖∞‖A−1‖∞ of A, using
infinity-norm

cond(A,inf) 1/rcond(A,’I’)

D. Hiebeler, Matlab / R Reference 10

No. Description Matlab R

94 Compute mean of all ele-
ments in vector or matrix

mean(v) for vectors, mean(A(:)) for
matrices

mean(v) or mean(A)

95 Compute means of columns
of a matrix

mean(A) colMeans(A)

96 Compute means of rows of a
matrix

mean(A,2) rowMeans(A)

97 Compute standard deviation
of all elements in vector or
matrix

std(v) for vectors, std(A(:)) for
matrices. This normalizes by n − 1.
Use std(v,1) to normalize by n.

sd(v) for vectors, sd(c(A)) for ma-
trices. This normalizes by n − 1.

98 Compute standard deviations
of columns of a matrix

std(A). This normalizes by n − 1.
Use std(A,1) to normalize by n

sd(A). This normalizes by n − 1.

99 Compute standard deviations
of rows of a matrix

std(A,0,2) to normalize by n − 1,
std(A,1,2) to normalize by n

apply(A,1,sd). This normalizes by
n − 1.

100 Compute variance of all ele-
ments in vector or matrix

var(v) for vectors, var(A(:)) for
matrices. This normalizes by n − 1.
Use var(v,1) to normalize by n.

var(v) for vectors, var(c(A)) for
matrices. This normalizes by n − 1.

101 Compute variance of columns
of a matrix

var(A). This normalizes by n − 1.
Use var(A,1) to normalize by n

apply(A,2,var). This normalizes by
n − 1.

102 Compute variance of rows of
a matrix

var(A,0,2) to normalize by n − 1,
var(A,1,2) to normalize by n

apply(A,1,var). This normalizes by
n − 1.

103 Compute covariance for two
vectors of observations

cov(v,w) computes the 2 × 2 co-
variance matrix; the off-diagonal ele-
ments give the desired covariance

cov(v,w)

104 Compute covariance matrix,
giving covariances between
columns of matrix A

cov(A) var(A) or cov(A)

105 Given matrices A and B,
build covariance matrix C
where cij is the covariance be-
tween column i of A and col-
umn j of B

I don’t know of a direct way to
do this in Matlab. But one way is
[Y,X]=meshgrid(std(B),std(A));

X.*Y.*corr(A,B)

cov(A,B)

106 Compute Pearson’s linear
correlation coefficient be-
tween elements of vectors v
and w

corr(v,w) Note: v and w must
be column vectors. To make it
work regardless of whether they
are row or column vectors, do
corr(v(:),w(:))

cor(v,w)

107 Compute Kendall’s tau corre-
lation statistic for vectors v
and w

corr(v,w,’type’,’kendall’) cor(v,w,method=’kendall’)

108 Compute Spearman’s rho
correlation statistic for
vectors v and w

corr(v,w,’type’,’spearman’) cor(v,w,method=’spearman’)

109 Compute pairwise Pearson’s
correlation coefficient be-
tween columns of matrix
A

corr(A) The ’type’ argument may
also be used as in the previous two
items

cor(A) The method argument may
also be used as in the previous two
items

110 Compute matrix C of pair-
wise Pearson’s correlation co-
efficients between each pair of
columns of matrices A and B,
i.e. so cij is the correlation
between column i of A and
column j of B

corr(A,B) The ’type’ argument
may also be used as just above

cor(A,B) The method argument
may also be used as just above

D. Hiebeler, Matlab / R Reference 11

No. Description Matlab R

111 Compute sum of all elements
in vector or matrix

sum(v) for vectors, sum(A(:)) for
matrices

sum(v) or sum(A)

112 Compute sums of columns of
matrix

sum(A) colSums(A)

113 Compute sums of rows of ma-
trix

sum(A,2) rowSums(A)

114 Compute matrix exponential
eA =

∑

∞

k=0
Ak/k!

expm(A) expm(Matrix(A)), but this is part of
the Matrix package which you’ll need
to install (see item 295 for how to in-
stall/load packages).

115 Compute cumulative sum of
values in vector

cumsum(v) cumsum(v)

116 Compute cumulative sums of
columns of matrix

cumsum(A) apply(A,2,cumsum)

117 Compute cumulative sums of
rows of matrix

cumsum(A,2) t(apply(A,1,cumsum))

118 Compute cumulative sum
of all elements of matrix
(column-by-column)

cumsum(A(:)) cumsum(A)

119 Cumulative product of ele-
ments in vector v

cumprod(v) (Can also be used in the
various ways cumsum can)

cumprod(v) (Can also be used in the
various ways cumsum can)

120 Cumulative minimum or
maximum of elements in
vector v

I don’t know of an easy way to do
this in Matlab

cummin(v) or cummax(v)

121 Compute differences between
consecutive elements of vec-
tor v. Result is a vector
w 1 element shorter than v,
where element i of w is ele-
ment i+1 of v minus element
i of v

diff(v) diff(v)

122 Make a vector y the same size
as vector x, which equals 4
everywhere that x is greater
than 5, and equals 3 every-
where else (done via a vector-
ized computation).

z = [3 4]; y = z((x > 5)+1) y = ifelse(x > 5, 4, 3)

123 Compute minimum of values
in vector v

min(v) min(v)

D. Hiebeler, Matlab / R Reference 12

No. Description Matlab R

124 Compute minimum of all val-
ues in matrix A

min(A(:)) min(A)

125 Compute minimum value of
each column of matrix A

min(A) (returns a row vector) apply(A,2,min) (returns a vector)

126 Compute minimum value of
each row of matrix A

min(A, [], 2) (returns a column
vector)

apply(A,1,min) (returns a vector)

127 Given matrices A and B,
compute a matrix where each
element is the minimum of
the corresponding elements of
A and B

min(A,B) pmin(A,B)

128 Given matrix A and scalar
c, compute a matrix where
each element is the minimum
of c and the corresponding el-
ement of A

min(A,c) pmin(A,c)

129 Find minimum among all val-
ues in matrices A and B

min([A(:) ; B(:)]) min(A,B)

130 Find index of the first time
min(v) appears in v, and
store that index in ind

[y,ind] = min(v) ind = which.min(v)

Notes:

• Matlab and R both have a max function (and R has pmax and which.max as well) which behaves
in the same ways as min but to compute maxima rather than minima.

• Functions like exp, sin, sqrt etc. will operate on arrays in both Matlab and R, doing the
computations for each element of the matrix.

No. Description Matlab R

131 Number of rows in A size(A,1) nrow(A)

132 Number of columns in A size(A,2) ncol(A)

133 Dimensions of A, listed in a
vector

size(A) dim(A)

134 Number of elements in vector
v

length(v) length(v)

135 Total number of elements in
matrix A

numel(A) length(A)

136 Max. dimension of A length(A) max(dim(A))

137 Sort values in vector v sort(v) sort(v)

138 Sort values in v, putting
sorted values in s, and indices
in idx, in the sense that s[k]
= x[idx[k]]

[s,idx]=sort(v) tmp=sort(v,index.return=TRUE);

s=tmp$x; idx=tmp$ix

139 To count how many values in
the vector x are between 4
and 7 (inclusive on the upper
end)

sum((x > 4) & (x <= 7)) sum((x > 4) & (x <= 7))

140 Given vector v, return list of
indices of elements of v which
are greater than 5

find(v > 5) which(v > 5)

D. Hiebeler, Matlab / R Reference 13

No. Description Matlab R

141 Given matrix A, return list
of indices of elements of A
which are greater than 5, us-
ing single-indexing

find(A > 5) which(A > 5)

142 Given matrix A, generate
vectors r and c giving rows
and columns of elements of A
which are greater than 5

[r,c] = find(A > 5) w = which(A > 5, arr.ind=TRUE);

r=w[,1]; c=w[,2]

143 Given vector x (of presum-
ably discrete values), build a
vector v listing unique val-
ues in x, and corresponding
vector c indicating how many
times those values appear in
x

v = unique(x); c = hist(x,v); w=table(x); c=as.numeric(w);

v=as.numeric(names(w))

144 Given vector x (of presum-
ably continuous values), di-
vide the range of values into k
equally-sized bins, and build
a vector m containing the
midpoints of the bins and a
corresponding vector c con-
taining the counts of values in
the bins

[c,m] = hist(x,k) w=hist(x,seq(min(x),max(x),

length.out=k+1), plot=FALSE);

m=w$mids; c=w$counts

145 Convolution / polynomial
multiplication (given vectors
x and y containing polyno-
mial coefficients, their convo-
lution is a vector containing
coefficients of the product of
the two polynomials)

conv(x,y) convolve(x,rev(y),type=’open’)

Note: the accuracy of this is not
as good as Matlab; e.g. doing
v=c(1,-1); for (i in 2:20)

v=convolve(v,c(-i,1),

type=’open’) to generate the
20th-degree Wilkinson polynomial
W (x) =

∏20

i=1
(x−i) gives a coefficient

of ≈ −780.19 for x19, rather than the
correct value -210.

3.4 Root-finding

No. Description Matlab R

146 Find roots of polynomial
whose coefficients are stored
in vector v (coefficients in v
are highest-order first)

roots(v) polyroot(rev(v)) (This function
really wants the vector to have the
constant coefficient first in v; rev re-
verses their order to achieve this.)

147 Find zero (root) of a function
f(x) of one variable

Define function f(x), then do
fzero(f,x0) to search for a root
near x0, or fzero(f,[a b]) to find
a root between a and b, assuming
the sign of f(x) differs at x = a
and x = b. Default forward error
tolerance (i.e. error in x) is machine
epsilon ǫmach.

Define function f(x), then do
uniroot(f, c(a,b)) to find a root
between a and b, assuming the sign
of f(x) differs at x = a and x = b.
Default forward error tolerance (i.e.
error in x) is fourth root of machine
epsilon, (ǫmach)0.25. To specify e.g.
a tolerance of 2−52, do uniroot(f,

c(a,b), tol=2^-52).

D. Hiebeler, Matlab / R Reference 14

3.5 Function optimization/minimization

No. Description Matlab R

148 Find value m which mini-
mizes a function f(x) of one
variable within the interval
from a to b

Define function f(x), then do

m = fminbnd(f, a, b)

Define function f(x), then do

m = optimize(f,c(a,b))$minimum

149 Find value m which mini-
mizes a function f(x, p1, p2)
with given extra parameters
(but minimization is only oc-
curing over the first argu-
ment), in the interval from a
to b.

Define function f(x,p1,p2), then use
an “anonymous function”:

% first define values for p1

% and p2, and then do:

m=fminbnd(@(x) f(x,p1,p2),a,b)

Define function f(x,p1,p2), then:

first define values for p1

and p2, and then do:

m = optimize(f, c(a,b), p1=p1,

p2=p2)$minimum

150 Find values of x, y, z which
minimize function f(x, y, z),
using a starting guess of x =
1, y = 2.2, and z = 3.4.

First write function f(v) which ac-
cepts a vector argument v containing
values of x, y, and z, and returns the
scalar value f(x, y, z), then do:

fminsearch(@f,[1 2.2 3.4])

First write function f(v) which ac-
cepts a vector argument v containing
values of x, y, and z, and returns the
scalar value f(x, y, z), then do:

optim(c(1,2.2,3.4),f)$par

151 Find values of x, y, z
which minimize function
f(x, y, z, p1, p2), using a
starting guess of x = 1,
y = 2.2, and z = 3.4, where
the function takes some extra
parameters (useful e.g. for
doing things like nonlinear
least-squares optimization
where you pass in some data
vectors as extra parameters).

First write function f(v,p1,p2)
which accepts a vector argument
v containing values of x, y, and
z, along with the extra parame-
ters, and returns the scalar value
f(x, y, z, p1, p2), then do:

fminsearch(@f,[1 2.2 3.4], ...

[], p1, p2)

Or use an anonymous function:

fminsearch(@(x) f(x,p1,p2), ...

[1 2.2 3.4])

First write function f(v,p1,p2) which
accepts a vector argument v contain-
ing values of x, y, and z, along with
the extra parameters, and returns the
scalar value f(x, y, z, p1, p2), then do:

optim(c(1,2.2,3.4), f, p1=p1,

p2=p2)$par

3.6 Numerical integration / quadrature

No. Description Matlab R

152 Numerically integrate func-
tion f(x) over interval from
a to b

quad(f,a,b) uses adaptive Simp-
son’s quadrature, with a default
absolute tolerance of 10−6. To
specify absolute tolerance, use
quad(f,a,b,tol)

integrate(f,a,b) uses adaptive
quadrature with default absolute
and relative error tolerances being
the fourth root of machine epsilon,
(ǫmach)0.25 ≈ 1.22 × 10−4. Tol-
erances can be specified by using
integrate(f,a,b, rel.tol=tol1,

abs.tol=tol2). Note that the func-
tion f must be written to work even
when given a vector of x values as its
argument.

D. Hiebeler, Matlab / R Reference 15

3.7 Curve fitting

No. Description Matlab R

153 Fit the line y = c1x + c0 to
data in vectors x and y.

p = polyfit(x,y,1)

The return vector p has the coeffi-
cients in descending order, i.e. p(1)
is c1, and p(2) is c0.

p = coef(lm(y ~ x))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c0, and p[2] is c1.

154 Fit the quadratic polynomial
y = c2x

2 + c1x+ c0 to data in
vectors x and y.

p = polyfit(x,y,2)

The return vector p has the coeffi-
cients in descending order, i.e. p(1)
is c2, p(2) is c1, and p(3) is c0.

p = coef(lm(y ~ x + I(x^2)))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c0, p[2] is c1, and p[3] is c2.

155 Fit nth degree polynomial
y = cnxn + cn−1x

n−1 + . . . +
c1x + c0 to data in vectors x
and y.

p = polyfit(x,y,n)

The return vector p has the coeffi-
cients in descending order, p(1) is
cn, p(2) is cn−1, etc.

There isn’t a simple function built
into the standard R distribution to do
this, but see the polyreg function in
the mda package (see item 295 for
how to install/load packages).

156 Fit the quadratic polynomial
with zero intercept, y =
c2x

2 + c1x to data in vectors
x and y.

(I don’t know a simple way do this
in Matlab, other than to write a
function which computes the sum
of squared residuals and use fmin-
search on that function. There is
likely an easy way to do it in the
Statistics Toolbox.)

p=coef(lm(y ~ -1 + x + I(x^2)))

The return vector p has the coeffi-
cients in ascending order, i.e. p[1] is
c1, and p[2] is c2.

157 Fit natural cubic spline
(S′′(x) = 0 at both end-
points) to points (xi, yi)
whose coordinates are in
vectors x and y; evaluate at
points whose x coordinates
are in vector xx, storing
corresponding y’s in yy

pp=csape(x,y,’variational’);

yy=ppval(pp,xx) but note that
csape is in Matlab’s Spline
Toolbox

tmp=spline(x,y,method=’natural’,

xout=xx); yy=tmp$y

158 Fit cubic spline using
Forsythe, Malcolm and
Moler method (third deriva-
tives at endpoints match
third derivatives of exact cu-
bics through the four points
at each end) to points (xi, yi)
whose coordinates are in
vectors x and y; evaluate at
points whose x coordinates
are in vector xx, storing
corresponding y’s in yy

I’m not aware of a function to do this
in Matlab

tmp=spline(x,y,xout=xx);

yy=tmp$y

D. Hiebeler, Matlab / R Reference 16

No. Description Matlab R

159 Fit cubic spline such that
first derivatives at endpoints
match first derivatives of ex-
act cubics through the four
points at each end) to points
(xi, yi) whose coordinates are
in vectors x and y; evaluate
at points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

pp=csape(x,y); yy=ppval(pp,xx)

but csape is in Matlab’s Spline
Toolbox

I’m not aware of a function to do this
in R

160 Fit cubic spline with periodic
boundaries, i.e. so that first
and second derivatives match
at the left and right ends
(the first and last y values
of the provided data should
also agree), to points (xi, yi)
whose coordinates are in vec-
tors x and y; evaluate at
points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

pp=csape(x,y,’periodic’);

yy=ppval(pp,xx) but csape is in
Matlab’s Spline Toolbox

tmp=spline(x,y,method=

’periodic’, xout=xx); yy=tmp$y

161 Fit cubic spline with “not-
a-knot” conditions (the first
two piecewise cubics coincide,
as do the last two), to points
(xi, yi) whose coordinates are
in vectors x and y; evaluate
at points whose x coordinates
are in vector xx, storing cor-
responding y’s in yy

yy=spline(x,y,xx) I’m not aware of a function to do this
in R

4 Conditionals, control structure, loops

No. Description Matlab R

162 “for” loops over values in a
vector v (the vector v is of-
ten constructed via a:b)

for i=v

command1

command2

end

If only one command inside the loop:

for (i in v)

command

or

for (i in v) command

If multiple commands inside the loop:

for (i in v) {

command1

command2

}

D. Hiebeler, Matlab / R Reference 17

No. Description Matlab R

163 “if” statements with no else
clause if cond

command1

command2

end

If only one command inside the clause:

if (cond)

command

or

if (cond) command

If multiple commands:

if (cond) {

command1

command2

}

164 “if/else” statement

if cond

command1

command2

else

command3

command4

end

Note: Matlab also has an “elseif”
statement, e.g.:

if cond1

command1

elseif cond2

command2

elseif cond3

command3

else

command4

end

If one command in clauses:

if (cond)

command1 else

command2

or

if (cond) cmd1 else cmd2

If multiple commands:

if (cond) {

command1

command2

} else {

command3

command4

}

Warning: the “else” must be on the
same line as command1 or the “}”
(when typed interactively at the com-
mand prompt), otherwise R thinks the
“if” statement was finished and gives
an error.
R does not have an “elseif” state-
ment.

Logical comparisons which can be used on scalars in “if” statements, or which operate element-by-
element on vectors/matrices:

Matlab R Description
x < a x < a True if x is less than a
x > a x > a True if x is greater than a
x <= a x <= a True if x is less than or equal to a
x >= a x >= a True if x is greater than or equal to a
x == a x == a True if x is equal to a
x ~= a x != a True if x is not equal to a

D. Hiebeler, Matlab / R Reference 18

Scalar logical operators:

Description Matlab R

a AND b a && b a && b

a OR b a || b a || b

a XOR b xor(a,b) xor(a,b)

NOT a ~a !a

The && and || operators are short-circuiting, i.e. && stops as soon as any of its terms are FALSE, and
|| stops as soon as any of its terms are TRUE.

Matrix logical operators (they operate element-by-element):

Description Matlab R

a AND b a & b a & b

a OR b a | b a | b

a XOR b xor(a,b) xor(a,b)

NOT a ~a !a

No. Description Matlab R

165 To test whether a scalar value
x is between 4 and 7 (inclu-
sive on the upper end)

if ((x > 4) && (x <= 7)) if ((x > 4) && (x <= 7))

166 To count how many values in
the vector x are between 4
and 7 (inclusive on the upper
end)

sum((x > 4) & (x <= 7)) sum((x > 4) & (x <= 7))

167 Test whether all values in
a logical/boolean vector are
TRUE

all(v) all(v)

168 Test whether any values in
a logical/boolean vector are
TRUE

any(v) any(v)

No. Description Matlab R

169 “while” statements to do iter-
ation (useful when you don’t
know ahead of time how
many iterations you’ll need).
E.g. to add uniform ran-
dom numbers between 0 and
1 (and their squares) until
their sum is greater than 20:

mysum = 0;

mysumsqr = 0;

while (mysum < 20)

r = rand;

mysum = mysum + r;

mysumsqr = mysumsqr + r^2;

end

mysum = 0

mysumsqr = 0

while (mysum < 20) {

r = runif(1)

mysum = mysum + r

mysumsqr = mysumsqr + r^2

}

(As with “if” statements and “for”
loops, the curly brackets are not nec-
essary if there’s only one statement in-
side the “while” loop.)

D. Hiebeler, Matlab / R Reference 19

No. Description Matlab R

170 “Switch” statements for inte-
gers

switch (x)

case 10

disp(’ten’)

case {12,13}

disp(’dozen (bakers?)’)

otherwise

disp(’unrecognized’)

end

R doesn’t have a switch statement ca-
pable of doing this. It has a function
which is fairly limited for integers, but
can which do string matching. See
?switch for more. But a basic ex-
ample of what it can do for integers is
below, showing that you can use it to
return different expressions based on
whether a value is 1, 2,

mystr = switch(x, ’one’,

’two’, ’three’)

print(mystr)

Note that switch returns NULL if x is
larger than 3 in the above case. Also,
continuous values of x will be trun-
cated to integers.

5 Functions, ODEs

No. Description Matlab R

171 Implement a function
add(x,y)

Put the following in add.m:

function retval=add(x,y)

retval = x+y;

Then you can do e.g. add(2,3)

Enter the following, or put it in a file
and source that file:

add = function(x,y) {

return(x+y)

}

Then you can do e.g. add(2,3).
Note, the curly brackets aren’t needed
if your function only has one line.

172 Implement a function
f(x,y,z) which returns mul-
tiple values, and store those
return values in variables u
and v

Write function as follows:

function [a,b] = f(x,y,z)

a = x*y+z; b=2*sin(x-z);

Then call the function by doing:
[u,v] = f(2,8,12)

Write function as follows:

f = function(x,y,z) {

a = x*y+z; b=2*sin(x-z)

return(list(a,b))

}

Then call the function by do-
ing: tmp=f(2,8,12); u=tmp[[1]];

v=tmp[[2]]. The above is most gen-
eral, and will work even when u and
v are different types of data. If they
are both scalars, the function could
simply return them packed in a vec-
tor, i.e. return(c(a,b)). If they
are vectors of the same size, the func-
tion could return them packed to-
gether into the columns of a matrix,
i.e. return(cbind(a,b)).

D. Hiebeler, Matlab / R Reference 20

No. Description Matlab R

173 Numerically solve ODE
dx/dt = 5x from t = 3 to
t = 12 with initial condition
x(3) = 7

First implement function

function retval=f(t,x)

retval = 5*x;

Then do ode45(@f,[3,12],7)

to plot solution, or
[t,x]=ode45(@f,[3,12],7) to get
back vector t containing time values
and vector x containing correspond-
ing function values. If you want
function values at specific times,
e.g. 3, 3.1, 3.2, . . . , 11.9, 12, you can
do [t,x]=ode45(@f,3:0.1:12,7).
Note: in older versions of Matlab,
use ’f’ instead of @f.

First implement function

f = function(t,x,parms) {

return(list(5*x))

}

Then do y=lsoda(7, seq(3,12,

0.1), f,NA) to obtain solution
values at times 3, 3.1, 3.2, . . . , 11.9, 12.
The first column of y, namely y[,1]
contains the time values; the second
column y[,2] contains the corre-
sponding function values. Note:
lsoda is part of the deSolve package
(see item 295 for how to install/load
packages).

174 Numerically solve system of
ODEs dw/dt = 5w, dz/dt =
3w + 7z from t = 3 to t = 12
with initial conditions w(3) =
7, z(3) = 8.2

First implement function

function retval=myfunc(t,x)

w = x(1); z = x(2);

retval = zeros(2,1);

retval(1) = 5*w;

retval(2) = 3*w + 7*z;

Then do
ode45(@myfunc,[3,12],[7;

8.2]) to plot solution, or
[t,x]=ode45(@myfunc,[3,12],[7;

8.2]) to get back vector t contain-
ing time values and matrix x, whose
first column containing correspond-
ing w(t) values and second column
contains z(t) values. If you want
function values at specific times, e.g.
3, 3.1, 3.2, . . . , 11.9, 12, you can do
[t,x]=ode45(@myfunc,3:0.1:12,[7;

8.2]). Note: in older versions of
Matlab, use ’f’ instead of @f.

First implement function

myfunc = function(t,x,parms) {

w = x[1]; z = x[2];

return(list(c(5*w, 3*w+7*z)))

}

Then do y=lsoda(c(7,8.2),

seq(3,12, 0.1), myfunc,NA)

to obtain solution values at times
3, 3.1, 3.2, . . . , 11.9, 12. The first
column of y, namely y[,1] contains
the time values; the second column
y[,2] contains the corresponding
values of w(t); and the third column
contains z(t). Note: lsoda is part of
the deSolve package (see item 295
for how to install/load packages).

175 Pass parameters such as r =
1.3 and K = 50 to an ODE
function from the command
line, solving dx/dt = rx(1 −
x/K) from t = 0 to t = 20
with initial condition x(0) =
2.5.

First implement function

function retval=func2(t,x,r,K)

retval = r*x*(1-x/K)

Then do ode45(@func2,[0 20],

2.5, [], 1.3, 50). The empty
matrix is necessary between the ini-
tial condition and the beginning of
your extra parameters.

First implement function

func2=function(t,x,parms) {

r=parms[1]; K=parms[2]

return(list(r*x*(1-x/K)))

}

Then do

y=lsoda(2.5,seq(0,20,0.1)

func2,c(1.3,50))

Note: lsoda is part of the deSolve
package (see item 295 for how to in-
stall/load packages).

D. Hiebeler, Matlab / R Reference 21

6 Probability and random values

No. Description Matlab R

176 Generate a continuous uni-
form random value between 0
and 1

rand runif(1)

177 Generate vector of n uniform
random vals between 0 and 1

rand(n,1) or rand(1,n) runif(n)

178 Generate m×n matrix of uni-
form random values between
0 and 1

rand(m,n) matrix(runif(m*n),m,n) or just
matrix(runif(m*n),m)

179 Generate m×n matrix of con-
tinuous uniform random val-
ues between a and b

a+rand(m,n)*(b-a) or if you
have the Statistics toolbox then
unifrnd(a,b,m,n)

matrix(runif(m*n,a,b),m)

180 Generate a random integer
between 1 and k

floor(k*rand) + 1 floor(k*runif(1)) + 1 Note:
sample(k)[1] would also work, but I
believe in general will be less efficient,
because that actually generates many
random numbers and then just uses
one of them.

181 Generate m×n matrix of dis-
crete uniform random inte-
gers between 1 and k

floor(k*rand(m,n))+1 or if you
have the Statistics toolbox then
unidrnd(k,m,n)

floor(k*matrix(runif(m*n),m))+1

182 Generate m×n matrix where
each entry is 1 with probabil-
ity p, otherwise is 0

(rand(m,n)<p)*1 Note: multiplying
by 1 turns the logical (true/false) re-
sult back into numeric values. You
could also do double(rand(m,n)<p)

(matrix(runif(m,n),m)<p)*1

(Note: multiplying by 1 turns the
logical (true/false) result back into
numeric values; using as.numeric()
to do it would lose the shape of the
matrix.)

183 Generate m×n matrix where
each entry is a with probabil-
ity p, otherwise is b

b + (a-b)*(rand(m,n)<p) b + (a-b)*(matrix(

runif(m,n),m)<p)

184 Generate a random integer
between a and b inclusive

floor((b-a+1)*rand)+a or if you
have the Statistics toolbox then
unidrnd(b-a+1)+a-1

floor((b-a+1)*runif(1))+a

185 Flip a coin which comes up
heads with probability p, and
perform some action if it does
come up heads

if (rand < p)

...some commands...

end

if (runif(1) < p) {

...some commands...

}

186 Generate a random permuta-
tion of the integers 1, 2, . . . , n

randperm(n) sample(n)

187 Generate a random selection
of k unique integers between
1 and n (i.e. sampling with-
out replacement)

[s,idx]=sort(rand(n,1));

ri=idx(1:k) or another way is
ri=randperm(n); ri=ri(1:k). Or
if you have the Statistics Toolbox,
then randsample(n,k)

ri=sample(n,k)

D. Hiebeler, Matlab / R Reference 22

No. Description Matlab R

188 Choose k values (with re-
placement) from the vector v,
storing result in w

L=length(v);

w=v(floor(L*rand(k,1))+1) Or,
if you have the Statistics Toolbox,
w=randsample(v,k,replace=true)

w=sample(v,k,replace=TRUE)

189 Choose k values (without re-
placement) from the vector v,
storing result in w

L=length(v); ri=randperm(L);

ri=ri(1:k); w=v(ri) Or, if
you have the Statistics Toolbox,
w=randsample(v,k,replace=false)

w=sample(v,k,replace=FALSE)

190 Set the random-number gen-
erator back to a known state
(useful to do at the beginning
of a stochastic simulation
when debugging, so you’ll get
the same sequence of random
numbers each time)

rand(’state’, 12) set.seed(12)

Note that the “*rnd,” “*pdf,” and “*cdf” functions described below are all part of the Matlab

Statistics Toolbox, and not part of the core Matlab distribution.
No. Description Matlab R

191 Generate a random value
from the Binomial(n, p) dis-
tribution

binornd(n,p) rbinom(1,n,p)

192 Generate a random value
from the Poisson distribution
with parameter λ

poissrnd(lambda) rpois(1,lambda)

193 Generate a random value
from the Exponential distri-
bution with mean µ

exprnd(mu) or -mu*log(rand) will
work even without the Statistics
Toolbox.

rexp(1, 1/mu)

194 Generate a random value
from the discrete uniform dis-
tribution on integers 1 . . . k

unidrnd(k) or floor(rand*k)+1

will work even without the Statistics
Toolbox.

sample(k,1)

195 Generate n iid random values
from the discrete uniform dis-
tribution on integers 1 . . . k

unidrnd(k,n,1) or
floor(rand(n,1)*k)+1 will work
even without the Statistics Toolbox.

sample(k,n,replace=TRUE)

196 Generate a random value
from the continuous uniform
distribution on the interval
(a, b)

unifrnd(a,b) or (b-a)*rand + a

will work even without the Statistics
Toolbox.

runif(1,a,b)

197 Generate a random value
from the normal distribution
with mean mu and standard
deviation σ

normrnd(mu,sigma) or
mu + sigma*randn will work
even without the Statistics Toolbox.

rnorm(1,mu,sigma)

Notes:

• The Matlab “*rnd” functions above can all take additional r,c arguments to build an r× c matrix
of iid random values. E.g. poissrnd(3.5,4,7) for a 4 × 7 matrix of iid values from the Poisson
distribution with mean λ = 3.5. The unidrnd(n,k,1) command above is an example of this, to
generate a k × 1 column vector.

• The first parameter of the R “r*” functions above specifies how many values are desired. E.g. to
generate 28 iid random values from a Poisson distribution with mean 3.5, use rpois(28,3.5). To
get a 4 × 7 matrix of such values, use matrix(rpois(28,3.5),4).

D. Hiebeler, Matlab / R Reference 23

No. Description Matlab R

198 Compute probability that
a random variable from the
Binomial(n, p) distribution
has value x (i.e. the density,
or pdf).

binopdf(x,n,p) or
nchoosek(n,x)*p^x*(1-p)^(n-x)

will work even without the Statistics
Toolbox, as long as n and x are
non-negative integers and 0 ≤ p
≤ 1.

dbinom(x,n,p)

199 Compute probability that a
random variable from the
Poisson(λ) distribution has
value x.

poisspdf(x,lambda) or
exp(-lambda)*lambda^x /

factorial(x) will work even
without the Statistics Toolbox, as
long as x is a non-negative integer
and lambda ≥ 0.

dpois(x,lambda)

200 Compute probability density
function at x for a random
variable from the exponential
distribution with mean µ.

exppdf(x,mu) or
(x>=0)*exp(-x/mu)/mu will work
even without the Statistics Toolbox,
as long as mu is positive.

dexp(x,1/mu)

201 Compute probability density
function at x for a random
variable from the Normal dis-
tribution with mean µ and
standard deviation σ.

normpdf(x,mu,sigma) or
exp(-(x-mu)^2/(2*sigma^2))/

(sqrt(2*pi)*sigma) will work even
without the Statistics Toolbox.

dnorm(x,mu,sigma)

202 Compute probability density
function at x for a random
variable from the continuous
uniform distribution on inter-
val (a, b).

unifpdf(x,a,b) or
((x>=a)&&(x<=b))/(b-a) will
work even without the Statistics
Toolbox.

dunif(x,a,b)

203 Compute probability that a
random variable from the dis-
crete uniform distribution on
integers 1 . . . n has value x.

unidpdf(x,n) or ((x==floor(x))

&& (x>=1)&&(x<=n))/n will work
even without the Statistics Toolbox,
as long as n is a positive integer.

((x==round(x)) && (x >= 1) &&

(x <= n))/n

Note: one or more of the parameters in the above “*pdf” (Matlab) or “d*” (R) functions can be
vectors, but they must be the same size. Scalars are promoted to arrays of the appropriate size.

D. Hiebeler, Matlab / R Reference 24

The corresponding CDF functions are below:
No. Description Matlab R

204 Compute probability that a
random variable from the
Binomial(n, p) distribution is
less than or equal to x (i.e.
the cumulative distribution
function, or cdf).

binocdf(x,n,p). Without the
Statistics Toolbox, as long
as n is a non-negative in-
teger, this will work: r =

0:floor(x); sum(factorial(n)./

(factorial(r).*factorial(n-r))

.*p.^r.*(1-p).^(n-r)). (Unfor-
tunately, Matlab ’s nchoosek
function won’t take a vector argu-
ment for k.)

pbinom(x,n,p)

205 Compute probability that a
random variable from the
Poisson(λ) distribution is less
than or equal to x.

poisscdf(x,lambda). With-
out the Statistics Toolbox, as
long as lambda ≥ 0, this
will work: r = 0:floor(x);

sum(exp(-lambda)*lambda.^r

./factorial(r))

ppois(x,lambda)

206 Compute cumulative distri-
bution function at x for a
random variable from the ex-
ponential distribution with
mean µ.

expcdf(x,mu) or
(x>=0)*(1-exp(-x/mu)) will
work even without the Statistics
Toolbox, as long as mu is positive.

pexp(x,1/mu)

207 Compute cumulative distri-
bution function at x for a ran-
dom variable from the Nor-
mal distribution with mean µ
and standard deviation σ.

normcdf(x,mu,sigma) or 1/2 -

erf(-(x-mu)/(sigma*sqrt(2)))/2

will work even without the Statis-
tics Toolbox, as long as sigma is
positive.

pnorm(x,mu,sigma)

208 Compute cumulative distri-
bution function at x for a ran-
dom variable from the contin-
uous uniform distribution on
interval (a, b).

unifcdf(x,a,b) or
(x>a)*(min(x,b)-a)/(b-a) will
work even without the Statistics
Toolbox, as long as b > a.

punif(x,a,b)

209 Compute probability that a
random variable from the dis-
crete uniform distribution on
integers 1 . . . n is less than or
equal to x.

unidcdf(x,n) or
(x>=1)*min(floor(x),n)/n will
work even without the Statistics
Toolbox, as long as n is a positive
integer.

(x>=1)*min(floor(x),n)/n

D. Hiebeler, Matlab / R Reference 25

7 Graphics

7.1 Various types of plotting

No. Description Matlab R

210 Create a new figure window figure windows() (when running R in Win-
dows), quartz() (in Mac OS-X), or
x11() (in Linux)

211 Select figure number n figure(n) (will create the figure if it
doesn’t exist)

dev.set(n) (returns the actual de-
vice selected; will be different from n
if there is no figure device with num-
ber n)

212 List open figure windows get(0,’children’) (The 0 handle
refers to the root graphics object.)

dev.list()

213 Close figure window(s) close to close the current figure win-
dow, close(n) to close a specified
figure, and close all to close all fig-
ures

dev.off() to close the currently ac-
tive figure device, dev.off(n) to close
a specified one, and graphics.off()

to close all figure devices.
214 Plot points using open circles plot(x,y,’o’) plot(x,y)

215 Plot points using solid lines plot(x,y) plot(x,y,type=’l’) (Note: that’s a
lower-case ’L’, not the number 1)

216 Plotting: color, point mark-
ers, linestyle

plot(x,y,str) where str is a
string specifying color, point marker,
and/or linestyle (see table below)
(e.g. ’gs--’ for green squares with
dashed line)

plot(x,y,type=str1,

pch=arg2,col=str3,

lty=arg4)

See tables below for possible values of
the 4 parameters

217 Plotting with logarithmic
axes

semilogx, semilogy, and loglog

functions take arguments like plot,
and plot with logarithmic scales for
x, y, and both axes, respectively

plot(..., log=’x’), plot(...,

log=’y’), and plot(...,

log=’xy’) plot with logarithmic
scales for x, y, and both axes,
respectively

218 Make bar graph where the x
coordinates of the bars are in
x, and their heights are in y

bar(x,y) Or just bar(y) if you only
want to specify heights. Note: if A
is a matrix, bar(A) interprets each
column as a separate set of observa-
tions, and each row as a different ob-
servation within a set. So a 20 × 2
matrix is plotted as 2 sets of 20 ob-
servations, while a 2 × 20 matrix is
plotted as 20 sets of 2 observations.

Can’t do this in R; but barplot(y)

makes a bar graph where you specify
the heights, barplot(y,w) also spec-
ifies the widths of the bars, and hist

can make plots like this too.

219 Make histogram of values in
x

hist(x) hist(x)

220 Given vector x containing
integer values, make a bar
graph where the x coordi-
nates of bars are the values,
and heights are the counts of
how many times the values
appear in x

v=unique(x); c=hist(x,v);

bar(v,c)

hist(x,(min(x)-.5):(max(x)+.5))

D. Hiebeler, Matlab / R Reference 26

No. Description Matlab R

221 Given vector x containing
continuous values, lump the
data into k bins and make a
histogram / bar graph of the
binned data

[c,m] = hist(x,k); bar(m,c) or
for slightly different plot style use
hist(x,k)

hist(x,seq(min(x), max(x),

length.out=k+1))

222 Make a plot containing error-
bars of height s above and be-
low (x, y) points

errorbar(x,y,s) errbar(x,y,y+s,y-s) Note: errbar
is part of the Hmisc package (see
item 295 for how to install/load pack-
ages).

223 Make a plot containing error-
bars of height a above and b
below (x, y) points

errorbar(x,y,b,a) errbar(x,y,y+a,y-b) Note: errbar
is part of the Hmisc package (see
item 295 for how to install/load pack-
ages).

224 Other types of 2-D plots stem(x,y) and stairs(x,y)

for other types of 2-D plots.
polar(theta,r) to use polar
coordinates for plotting.

pie(v)

225 Make a 3-D plot of some data
points with given x, y, z co-
ordinates in the vectors x, y,
and z.

plot3(x,y,z) This works much like
plot, as far as plotting symbols, line-
types, and colors.

cloud(z~x*y) You can also use
arguments pch and col as with
plot. To make a 3-D plot with
lines, do cloud(z~x*y,type=’l’,

panel.cloud=panel.3dwire)

226 Surface plot of data in matrix
A

surf(A)

You can then click on the small
curved arrow in the figure window
(or choose “Rotate 3D” from the
“Tools” menu), and then click and
drag the mouse in the figure to ro-
tate it in three dimensions.

persp(A)

You can include shading in the im-
age via e.g. persp(A,shade=0.5).
There are two viewing angles you
can also specify, among other pa-
rameters, e.g. persp(A, shade=0.5,

theta=50, phi=35).
227 Surface plot of f(x, y) =

sin(x + y)
√

y for 100 values
of x between 0 and 10, and
90 values of y between 2 and
8

x = linspace(0,10,100);

y = linspace(2,8,90);

[X,Y] = meshgrid(x,y);

Z = sin(X+Y).*sqrt(Y);

surf(X,Y,Z)

shading flat

x = seq(0,10,100)

y = seq(2,8,90)

f = function(x,y)

return(sin(x+y)*sqrt(y))

z = outer(x,y,f)

persp(x,y,z)

228 Other ways of plotting the
data from the previous com-
mand

mesh(X,Y,Z), surfc(X,Y,Z),
surfl(X,Y,Z), contour(X,Y,Z),
pcolor(X,Y,Z),
waterfall(X,Y,Z). Also see the
slice command.

contour(x,y,z) Or do
s=expand.grid(x=x,y=y), and
then wireframe(z~x*y,s) or
wireframe(z~x*y,s,shade=TRUE)

(Note: wireframe is part of the
lattice package; see item 295 for how
to load packages). If you have vectors
x, y, and z all the same length, you
can also do symbols(x,y,z).

D. Hiebeler, Matlab / R Reference 27

Adding various labels or making adjustments to plots
No. Description Matlab R

229 Set axis ranges in a figure
window

axis([x1 x2 y1 y2]) You have to do this when
you make the plot, e.g.
plot(x,y,xlim=c(x1,x2),

ylim=c(y1,y2))

230 Add title to plot title(’somestring’) title(main=’somestring’)

adds a main title,
title(sub=’somestring’) adds
a subtitle. You can also include
main= and sub= arguments in a
plot command.

231 Add axis labels to plot xlabel(’somestring’) and
ylabel(’somestring’)

title(xlab=’somestring’,

ylab=’anotherstr’). You can
also include xlab= and ylab=
arguments in a plot command.

232 Include Greek letters or sym-
bols in plot axis labels

You can use basic TeX com-
mands, e.g. plot(x,y);

xlabel(’\phi^2 + \mu_{i,j}’)

or xlabel(’fecundity \phi’)

See also help tex.m and parts of
doc text props for more about
building labels using general LaTeX
commands

plot(x,y,xlab=

expression(phi^2 + mu[’i,j’]))

or plot(x,y,xlab=expression(

paste(’fecundity ’, phi)))

See also help(plotmath) and p.
98 of the R Graphics book by Paul
Murrell for more.

233 Change font size to 16 in plot
labels

For the legends and numerical axis
labels, use set(gca, ’FontSize’,

16), and for text labels on axes
do e.g. xlabel(’my x var’,

’FontSize’, 16)

For on-screen graphics, do
par(ps=16) followed by e.g. a plot

command. For PostScript or PDF
plots, add a pointsize=16 argument,
e.g. pdf(’myfile.pdf’, width=8,

height=8, pointsize=16) (see
items 245 and 246)

234 Add grid lines to plot grid on (and grid off to turn off) grid() Note that if you’ll be
printing the plot, the default style
for grid-lines is to use gray dot-
ted lines, which are almost invis-
ible on some printers. You may
want to do e.g. grid(lty=’dashed’,
col=’black’) to use black dashed
lines which are easier to see.

235 Add figure legend to top-left
corner of plot

legend(’first’, ’second’,

’Location’, ’NorthWest’)

legend(’topleft’,

legend=c(’first’, ’second’),

col=c(’red’, ’blue’),

pch=c(’*’,’o’))

Matlab note: sometimes you build a graph piece-by-piece, and then want to manually add a legend
which doesn’t correspond with the order you put things in the plot. You can manually construct a legend
by plotting “invisible” things, then building the legend using them. E.g. to make a legend with black stars
and solid lines, and red circles and dashed lines: h1=plot(0,0,’k*-’); set(h1,’Visible’, ’off’);

h2=plot(0,0,’k*-’); set(h2,’Visible’, ’off’); legend([h1 h2], ’blah, ’whoa’). Just be sure
to choose coordinates for your “invisible” points within the current figure’s axis ranges.

D. Hiebeler, Matlab / R Reference 28

No. Description Matlab R

236 Adding more things to a fig-
ure

hold on means everything plotted
from now on in that figure window is
added to what’s already there. hold
off turns it off. clf clears the figure
and turns off hold.

points(...) and lines(...) work
like plot, but add to what’s already
in the figure rather than clearing the
figure first. points and lines are
basically identical, just with different
default plotting styles. Note: axes
are not recalculated/redrawn when
adding more things to a figure.

237 Plot multiple data sets at
once

plot(x,y) where x and y are 2-D
matrices. Each column of x is plot-
ted against the corresponding col-
umn of y. If x has only one column,
it will be re-used.

matplot(x,y) where x and y are 2-D
matrices. Each column of x is plotted
against the corresponding column of
y. If x has only one column, it will be
re-used.

238 Plot sin(2x) for x between 7
and 18

fplot(’sin(2*x)’, [7 18]) curve(sin(2*x), 7, 18, 200)

makes the plot, by sampling the
value of the function at 200 values
between 7 and 18 (if you don’t
specify the number of points, 101
is the default). You could do this
manually yourself via commands like
tmpx=seq(7,18,200); plot(tmpx,

sin(2*tmpx)).
239 Plot color image of integer

values in matrix A
image(A) to use array values as
raw indices into colormap, or
imagesc(A) to automatically scale
values first (these both draw row
1 of the matrix at the top of the
image); or pcolor(A) (draws row
1 of the matrix at the bottom of
the image). After using pcolor,
try the commands shading flat or
shading interp.

image(A) (it rotates the matrix 90 de-
grees counterclockwise: it draws row
1 of A as the left column of the im-
age, and column 1 of A as the bottom
row of the image, so the row number
is the x coord and column number is
the y coord). It also rescales colors. If
you are using a colormap with k en-
tries, but the value k does not appear
in A, use image(A,zlim=c(1,k))

to avoid rescaling of colors. Or
e.g. image(A,zlim=c(0,k-1)) if you
want values 0 through k−1 to be plot-
ted using the k colors.

240 Add colorbar legend to image
plot

colorbar, after using image or
pcolor.

Use filled.contour(A) rather
than image(A), although it “blurs”
the data via interpolation, or
use levelplot(A) from the lat-
tice package (see item 295 for
how to load packages). To use
a colormap with the latter, do
e.g. levelplot(A,col.regions=

terrain.colors(100)).
241 Set colormap in image colormap(hot). Instead of hot, you

can also use gray, flag, jet (the
default), cool, bone, copper, pink,
hsv, prism. By default, the length
of the new colormap is the same as
the currently-installed one; use e.g.
colormap(hot(256)) to specify the
number of entries.

image(A,col=terrain.colors(100)).
The parameter 100 specifies the
length of the colormap. Other
colormaps are heat.colors(),
topo.colors(), and cm.colors().

D. Hiebeler, Matlab / R Reference 29

No. Description Matlab R

242 Build your own colormap us-
ing Red/Green/Blue triplets

Use an n × 3 matrix; each row
gives R,G,B intensities between 0
and 1. Can use as argument with
colormap. E.g. for 2 colors: mycmap
= [0.5 0.8 0.2 ; 0.2 0.2 0.7]

Use a vector of hexadecimal strings,
each beginning with ’#’ and giving
R,G,B intensities between 00 and FF.
E.g. c(’#80CC33’,’#3333B3’); can
use as argument to col= parameter
to image. You can build such a
vector of strings from vectors of Red,
Green, and Blue intensities (each
between 0 and 1) as follows (for a
2-color example): r=c(0.5,0.2);

g=c(0.8,0.2); b=c(0.2,0.7);

mycolors=rgb(r,g,b).

Matlab plotting specifications, for use with plot, fplot, semilogx, semilogy, loglog, etc:
Symbol Color Symbol Marker Symbol Linestyle

b blue . point (.) - solid line
g green o circle (◦) : dotted line
r red x cross (×) -. dash-dot line
c cyan + plus sign (+) -- dashed line
m magenta * asterisk (∗)
y yellow s square (¤)
k black d diamond (♦)
w white v triangle (down) (▽)

^ triangle (up) (△)
< triangle (left) (⊳)
> triangle (right) (⊲)
p pentragram star
h hexagram star

R plotting specifications for col (color), pch (plotting character), and type arguments, for use with plot,
matplot, points, and lines:

col Description pch Description type Description
’blue’ Blue ’a’ a (similarly for other

characters, but see ’.’
below for an exception

p points

’green’ Green 19 solid circle l lines
’red’ Red 20 bullet (smaller circle) b both
’cyan’ Cyan 21 open circle c lines part only of “b”

’magenta’ Magenta 22 square o lines, points overplotted
’yellow’ Yellow 23 diamond h histogram-like lines
’black’ Black 24 triangle point-up s steps
’#RRGGBB’ hexadecimal specifica-

tion of Red, Green,
Blue

25 triangle point-down S another kind of steps

(Other names) See colors() for list of
available color names.

’.’ rectangle of size 0.01
inch, 1 pixel, or 1 point
(1/72 inch) depending
on device

n no plotting

(See table on next page
for more)

D. Hiebeler, Matlab / R Reference 30

R plotting specifications for lty (line-type) argument, for use with plot, matplot, points, and lines:
lty Description
0 blank
1 solid
2 dashed
3 dotted
4 dotdash
5 longdash
6 twodash

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 AA bb . ##

R plotting characters, i.e. values for pch argument (from the book R Graphics, by Paul Murrell,
Chapman & Hall / CRC, 2006)

D. Hiebeler, Matlab / R Reference 31

No. Description Matlab R

243 Divide up a figure window
into smaller sub-figures

subplot(m,n,k) divides the current
figure window into an m × n ar-
ray of subplots, and draws in sub-
plot number k as numbered in “read-
ing order,” i.e. left-to-right, top-to-
bottom. E.g. subplot(2,3,4) se-
lects the first sub-figure in the second
row of a 2 × 3 array of sub-figures.
You can do more complex things,
e.g. subplot(5,5,[1 2 6 7]) se-
lects the first two subplots in the first
row, and first two subplots in the
second row, i.e. gives you a bigger
subplot within a 5 × 5 array of sub-
plots. (If you that command followed
by e.g. subplot(5,5,3) you’ll see
what’s meant by that.)

There are several ways to do this, e.g.
using layout or split.screen, al-
though they aren’t quite as friendly
as Matlab ’s. E.g. if you let A =

1 1 2
1 1 3
4 5 6

, then layout(A) will

divide the figure into 6 sub-figures:
you can imagine the figure divide into
a 3 × 3 matrix of smaller blocks; sub-
figure 1 will take up the upper-left
2×2 portion, and sub-figures 2–6 will
take up smaller portions, according to
the positions of those numbers in the
matrix A. Consecutive plotting com-
mands will draw into successive sub-
figures; there doesn’t seem to be a way
to explicitly specify which sub-figure
to draw into next.
To use split.screen, you can
do e.g. split.screen(c(2,1)) to
split into a 2 × 1 matrix of sub-
figures (numbered 1 and 2). Then
split.screen(c(1,3),2) splits sub-
figure 2 into a 1× 3 matrix of smaller
sub-figures (numbered 3, 4, and 5).
screen(4) will then select sub-figure
number 4, and subsequent plotting
commands will draw into it.
A third way to accomplish this is
via the commands par(mfrow=) or
par(mfcol=) to split the figure win-
dow, and par(mfg=) to select which
sub-figure to draw into.
Note that the above methods are all
incompatible with each other.

244 Force graphics windows to
update

drawnow (Matlab normally only
updates figure windows when a
script/function finishes and returns
control to the Matlab prompt, or
under a couple of other circum-
stances. This forces it to update
figure windows to reflect any recent
plotting commands.)

R automatically updates graphics
windows even before functions/scripts
finish executing, so it’s not neces-
sary to explictly request it. But note
that some graphics functions (partic-
ularly those in the lattice package)
don’t display their results when called
from scripts or functions; e.g. rather
than levelplot(...) you need to do
print(levelplot(...)). Such func-
tions will automatically display their
plots when called interactively from
the command prompt.

D. Hiebeler, Matlab / R Reference 32

7.2 Printing/saving graphics

No. Description Matlab R

245 To print/save to a PDF file
named fname.pdf

print -dpdf fname saves the con-
tents of currently active figure win-
dow

First do pdf(’fname.pdf’). Then,
do various plotting commands
to make your image, as if you
were plotting in a window. Fi-
nally, do dev.off() to close/save
the PDF file. To print the con-
tents of the active figure win-
dow, do dev.copy(device=pdf,

file=’fname.pdf’); dev.off().
(But this will not work if you’ve
turned off the display list via
dev.control(displaylist=

’inhibit’).)
246 To print/save to a PostScript

file fname.ps or fname.eps
print -dps fname for black &
white PostScript; print -dpsc

fname for color PostScript; print

-deps fname for black & white
Encapsulated PostScript; print

-depsc fname for color Encapsu-
lated PostScript. The first two save
to fname.ps, while the latter two
save to fname.eps.

postscript(’fname.eps’), followed
by your plotting commands, fol-
lowed by dev.off() to close/save
the file. Note: you may want to
use postscript(’fname.eps’,

horizontal=FALSE) to save your fig-
ure in portrait mode rather than the
default landscape mode. To print the
contents of the active figure window,
do dev.copy(device=postscript,

file=’fname.eps’); dev.off().
(But this will not work if you’ve
turned off the display list via
dev.control(displaylist=

’inhibit’).) You can also include
the horizontal=FALSE argument
with dev.copy().

247 To print/save to a JPEG file
fname.jpg with jpeg qual-
ity = 90 (higher quality looks
better but makes the file
larger)

print -djpeg90 fname jpeg(’fname.jpg’,quality=90),
followed by your plotting commands,
followed by dev.off() to close/save
the file.

D. Hiebeler, Matlab / R Reference 33

7.3 Animating cellular automata / lattice simulations

No. Description Matlab R

248 To display images of cellu-
lar automata or other lattice
simulations while running in
real time

Repeatedly use either pcolor or
image to display the data. Don’t
forget to call drawnow as well, oth-
erwise the figure window will not be
updated with each image.

If you simply call image repeatedly,
there is a great deal of flicker-
ing/flashing. To avoid this, after
drawing the image for the first time
using e.g. image(A), from then
on only use image(A,add=TRUE),
which avoids redrawing the entire
image (and the associated flicker).
However, this will soon consume a
great deal of memory, as all drawn
images are saved in the image buffer.
There are two solutions to that
problem: (1) every k time steps,
leave off the “add=TRUE” argument
to flush the image buffer (and get
occasional flickering), where you
choose k to balance the flickering
vs. memory-usage tradeoff; or
(2) after drawing the first image,
do dev.control(displaylist=

’inhibit’) to prohibit retaining the
data. However, the latter solution
means that after the simulation is
done, the figure window will not be
redrawn if it is resized, or temporarily
obscured by another window. (A
call to dev.control(displaylist=

’enable’) and then one final
image(A) at the end of the sim-
ulation will re-enable re-drawing
after resizing or obscuring, without
consuming extra memory.)

D. Hiebeler, Matlab / R Reference 34

8 Working with files

No. Description Matlab R

249 Create a folder (also known
as a “directory”)

mkdir dirname dir.create(’dirname’)

250 Set/change working directory cd dirname setwd(’dirname’)

251 See list of files in current
working directory

dir dir()

252 Run commands in file ‘foo.m’
or ‘foo.R’ respectively

foo source(’foo.R’)

253 Read data from text file
“data.txt” into matrix A

A=load(’data.txt’) or
A=importdata(’data.txt’) Note
that both routines will ignore com-
ments (anything on a line following
a “%” character)

A=as.matrix(read.table(

’data.txt’)) This will ignore
comments (anything on a line
following a “#” character). To ig-
nore comments indicated by “%”,
do A=as.matrix(read.table(

’data.txt’, comment.char=’%’))

254 Write data from matrix A
into text file “data.txt”

save data.txt A -ascii write(A, file=’data.txt’,

ncolumn=dim(A)[2])

D. Hiebeler, Matlab / R Reference 35

9 Miscellaneous

9.1 Variables

No. Description Matlab R

255 Assigning to variables x = 5 x <- 5 or x = 5

256 From within a function, as-
sign a value to variable y
in the base environment (i.e.
the command prompt envi-
ronment)

assignin(’base’, ’y’, 7) y <<- 7

257 From within a function, ac-
cess the value of variable y
in the base environment (i.e.
the command prompt envi-
ronment)

evalin(’base’, ’y’) y (In R, if there isn’t a local variable
y within the function, it will look for
one in the base environment.)

258 Short list of defined variables who ls()

259 Long list of defined variables whos ls.str()

260 See detailed info about the
variable ab

whos ab str(ab)

261 See detailed info about all
variables with “ab” in their
name

whos *ab* ls.str(pattern=’ab’)

262 Open graphical data editor,
to edit the value of variable
A (useful for editing values in
a matrix, though it works for
non-matrix variables as well)

openvar(A), or double-click on the
variable in the Workspace pane (if
it’s being displayed) of your Mat-

labdesktop

fix(A)

263 Clear one variable clear x rm(x)

264 Clear two variables clear x y rm(x,y)

265 Clear all variables clear all rm(list=ls())

266 See what type of object x is class(x) class(x)

267 (Variable names) Variable names must begin with a
letter, but after that they may con-
tain any combination of letters, dig-
its, and the underscore character.
Names are case-sensitive.

Variable names may contain letters,
digits, the period, and the underscore
character. They cannot begin with a
digit or underscore, or with a period
followed by a digit. Names are case-
sensitive.

268 Result of last command ans contains the result of the last
command which did not assign its
value to a variable. E.g. after 2+5;

x=3, then ans will contain 7.

.Last.value contains the result of
the last command, whether or not its
value was assigned to a variable. E.g.
after 2+5; x=3, then .Last.value will
contain 3.

D. Hiebeler, Matlab / R Reference 36

9.2 Strings and Misc.

No. Description Matlab R

269 Line continuation If you want to break up a Matlab

command over more than one line,
end all but the last line with three
periods: “...”. E.g.:
x = 3 + ...

4

In R, you can spread commands out
over multiple lines, and nothing extra
is necessary. R will continue reading
input until the command is complete.
E.g.:
x = 3 +

4

270 Controlling formatting of
output

format short g and
format long g are handy; see
help format

options(digits=6) tells R you’d like
to use 6 digits of precision in values it
displays (it is only a suggestion, not
strictly followed)

271 Exit the program quit or exit q() or quit()
272 Comments % this is a comment # this is a comment

273 Print a string disp(’hi there’) or to
omit trailing newline use
fprintf(’hi there’)

print(’hi there’)

274 Print a string containing sin-
gle quotes

disp(’It’’s nice’) or
to omit trailing newline
fprintf(’It’’s nice’)

print(’It\’s nice’) or
print("It’s nice")

275 Give prompt and read input x = input(’Enter data:’) print(’Enter data:’)

from user x = scan()

276 Concatenate strings [’two hal’ ’ves’] paste(’two hal’, ’ves’, sep=’’)

277 Concatenate strings stored in
a vector

v={’two ’, ’halves’};

strcat(v{:}) But note that
this drops trailing spaces on
strings. To avoid that, instead do
strcat([v{:}])

v=c(’two ’, ’halves’);

paste(v, collapse=’’)

278 Extract substring of a string text1=’hi there’;

text2=text(2:6)

text1=’hi there’;

text2=substr(text1,2,6)

279 Determine whether elements
of a vector are in a set, and
give positions of correspond-
ing elements in the set.

x = ’a’, ’aa’, ’bc’, ’c’; y

= ’da’, ’a’, ’bc’, ’a’, ’bc’,

’aa’; [tf, loc]=ismember(x,y)

Then loc contains the locations of
last occurrences of elements of x
in the set y, and 0 for unmatched
elements.

x = c(’a’, ’aa’, ’bc’, ’c’); y

= c(’da’, ’a’, ’bc’, ’a’, ’bc’,

’aa’); loc=match(x,y) Then loc
contains the locations of first oc-
curences of elements of x in the set
y, and NA for unmatched elements.

280 Convert number to string num2str(x) as.character(x)

D. Hiebeler, Matlab / R Reference 37

No. Description Matlab R

281 Use sprintf to create a
formatted string. Use %d for
integers (“d” stands for “dec-
imal”, i.e. base 10), %f for
floating-point numbers, %e
for scientific-notation floating
point, %g to automatically
choose %e or %f based on
the value. You can spec-
ify field-widths/precisions,
e.g. %5d for integers with
padding to 5 spaces, or %.7f
for floating-point with 7
digits of precision. There are
many other options too; see
the docs.

x=2; y=3.5;

s=sprintf(’x is %d, y=%g’, ...

x, y)

x=2; y=3.5

s=sprintf(’x is %d, y is %g’,

x, y)

282 Machine epsilon ǫmach, i.e.
difference between 1 and the
next largest double-precision
floating-point number

eps (See help eps for various other
things eps can give.)

.Machine$double.eps

283 Pause for x seconds pause(x) Sys.sleep(x)

284 Wait for user to press any key pause Don’t know of a way to do this in R,
but scan(quiet=TRUE) will wait until
the user presses the Enter key

285 Measure CPU time used to
do some commands

t1=cputime; ...commands... ;

cputime-t1

t1=proc.time(); ...commands...

; (proc.time()-t1)[1]

286 Measure elapsed (“wall-
clock”) time used to do some
commands

tic; ...commands... ; toc or
t1=clock; ...commands... ;

etime(clock,t1)

t1=proc.time(); ...commands...

; (proc.time()-t1)[3]

287 Print an error message an in-
terrupt execution

error(’Problem!’) stop(’Problem!’)

288 Print a warning message warning(’Smaller problem!’) warning(’Smaller problem!’)

289 Putting multiple statements
on one line

Separate statements by commas or
semicolons. A semicolon at the end
of a statement suppresses display of
the results (also useful even with just
a single statement on a line), while a
comma does not.

Separate statements by semicolons.

290 Evaluate contents of a string
s as command(s).

eval(s) eval(parse(text=s))

291 Show where a command is which sqrt shows you where the file
defining the sqrt function is (but
note that many basic functions are
“built in,” so the Matlab func-
tion file is really just a stub con-
taining documentation). This is use-
ful if a command is doing something
strange, e.g. sqrt isn’t working. If
you’ve accidentally defined a variable

called sqrt, then which sqrt will
tell you, so you can clear sqrt to
erase it so that you can go back to
using the function sqrt.

R does not execute commands directly
from files, so there is no equivalent
command.

D. Hiebeler, Matlab / R Reference 38

No. Description Matlab R

292 Query/set the search path. path displays the current search path
(the list of places Matlab searches
for commands you enter). To add a
directory ~/foo to the beginning of
the search path, do

addpath ~/foo -begin

or to add it to the end of the path,
do addpath ~/foo -end (Note: you
should generally add the full path
of a directory, i.e. in Linux or Mac
OS-X something like ~/foo as above
or of the form /usr/local/lib/foo,
while under Windows it would be
something like C:/foo)

R does not use a search path to look
for files.

293 Startup sequence If a file startup.m exists in the
startup directory for Matlab, its
contents are executed. (See the
Matlab docs for how to change the
startup directory.)

If a file .Rprofile exists in the cur-
rent directory or the user’s home di-
rectory (in that order), its contents
are sourced; saved data from the file
.RData (if it exists) are then loaded.
If a function .First() has been de-
fined, it is then called (so the obvious
place to define this function is in your
.Rprofile file).

294 Shutdown sequence Upon typing quit or exit, Matlab

will run the script finish.m if present
somewhere in the search path.

Upon typing q() or quit(), R will call
the function .Last() if it has been de-
fined (one obvious place to define it
would be in the .Rprofile file)

295 Install and load a package. Matlab does not have packages. It
has toolboxes, which you can pur-
chase and install. “Contributed”
code (written by end users) can sim-
ply be downloaded and put in a di-
rectory which you then add to Mat-

lab’s path (see item 292 for how to
add things to Matlab’s path).

To install e.g. the deSolve pack-
age, you can use the command
install.packages(’deSolve’).
You then need to load the package
in order to use it, via the command
library(’deSolve’). When running
R again later you’ll need to load the
package again to use it, but you
should not need to re-install it. Note
that the lattice package is typically
included with binary distributions of
R, so it only needs to be loaded, not
installed.

D. Hiebeler, Matlab / R Reference 39

10 Spatial Modeling

No. Description Matlab R

296 Take an L×L matrix A of
0s and 1s, and “seed” frac-
tion p of the 0s (turn them
into 1s), not changing entries
which are already 1.

A = (A | (rand(L) < p))*1; A = (A | (matrix(runif(L^2),L)

< p))*1

297 Take an L×L matrix A of 0s
and 1s, and “kill” fraction p
of the 1s (turn them into 0s),
not changing the rest of the
entries

A = (A & (rand(L) < 1-p))*1; A = (A & (matrix(runif(L^2),L)

< 1-p))*1

298 Do “wraparound” on a coor-
dinate newx that you’ve al-
ready calculated. You can
replace newx with x+dx if
you want to do wraparound
on an offset x coordinate.

mod(newx-1,L)+1 Note: for porta-
bility with other languages such as
C which handle MOD of negative
values differently, you may want to
get in the habit of instead doing
mod(newx-1+L,L)+1

((newx-1) %% L) + 1 Note: for
portability with other languages such
as C which handle MOD of nega-
tive values differently, you may want
to get in the habit of instead doing
((newx-1+L)%%L) + 1

299 Randomly initialize a portion
of an array: set fraction p of
sites in rows iy1 through iy2
and columns ix1 through ix2
equal to 1 (and set the rest of
the sites in that block equal
to zero). Note: this assume
iy1 < iy2 and ix1 < ix2.

dx=ix2-ix1+1; dy=iy2-iy1+1;

A(iy1:iy2,ix1:ix2) = ...

(rand(dy,dx) < p0)*1;

dx=ix2-ix1+1; dy=iy2-iy1+1;

A[iy1:iy2,ix1:ix2] =

(matrix(runif(dy*dx),dy) <

p0)*1

INDEX OF MATLAB COMMANDS AND CONCEPTS 40

Index of MATLAB commands and concepts

’, 72
,, 289
.*, 71
..., 269
./, 77
.^, 81
/, 76
:, 12–14
;, 289
=, 255
[, 6–8
%, 272
&, 165, 166
^, 46, 79, 80
\, 73, 78
{ 41

abs, 47, 65
acos, 52
acosh, 54
addpath, 292
all, 167
angle, 66
ans, 268
any, 168
asin, 52
asinh, 54
assignin, 256
atan, 52
atanh, 54
average, see mean
axis, 229

bar, 218, 220, 221
binocdf, 204
binopdf, 198
binornd, 191
boolean tests

scalar, 165
vector, 166–168

cd, 250
ceil, 58
cell, 40
cell arrays, 40

extracting elements of, 41
cellular automata animation, 248
chol, 87
class, 266
clear, 263–265
clf, 236

clock, 286
close, 213
colon, see :
colorbar, 240
colormap

building your own, 242
colormap, 241, 242
column vector, 7
comments, 272
complex numbers, 64–69
cond, 91–93
conj, 67
contour, 228
conv, 145
corr, 105–110
cos, 51
cosh, 53
cov, 103, 104
cputime, 285
csape, 157, 159, 160
cubic splines, 158, 159

natural, 157
not-a-knot, 161
periodic, 160

cumprod, 119
cumsum, 115–118
cumulative distribution functions

binomial, 204
continuous uniform on interval (a, b), 208
discrete uniform from 1..n, 209
exponential, 206
normal, 207
Poisson, 205

diag, 21, 22
diff, 121
differential equations, see ode45

dir, 251
disp, 273, 274
doc, 4
drawnow, 244, 248

echelon form, see matrix
eig, 83
element-by-element matrix operations, see ma-

trix
else, 164
elseif, 164
eps, 282
erf, 60

INDEX OF MATLAB COMMANDS AND CONCEPTS 41

erfc, 61
erfcinv, 63
erfinv, 62
error, 287
errorbar, 222, 223
etime, 286
eval, 290
evalin, 257
exit, 271
exp, 48
expcdf, 206
expm, 114
exppdf, 200
exprnd, 193
eye, 20

figure, 210, 211
file

reading data from, 254
running commands in, 252
text

reading data from, 253
saving data to, 254

find, 140–142
finish.m, 294
floor, 57
fminbnd, 148, 149
fminsearch, 150, 151
font size in plots, 233
for, 162
format, 270
fplot, 238
fprintf, 273, 274
function

multi-variable
minimization, 150
minimization over first parameter only, 149
minimization over only some parameters,

151
single-variable

minimization, 148
user-written, 171

returning multiple values, 172
fzero, 147

gca, 233
get, 212
Greek letters

in plot labels, 232
grid, 234

help, 1–3
helpbrowser, 4
helpdesk, 4

hilb, 38
hist, 143, 144, 219, 220
hold, 236

identity, see matrix
if, 163–165
imag, 69
image, 239, 248
imagesc, 239
importdata, 253
ind2sub, 31
indexing

matrix, 10
with a single index, 11

vector, 9
input, 275
inv, 75
inverse, see matrix
ismember, 279

legend, 235
length, 134, 136
linspace, 15
load, 253, 254
log, 49
log10, 50
log2, 50
loglog, 217
lookfor, 5
lu, 84

matrix, 8
boolean operations on, 141, 142
changing shape of, 35
Cholesky factorization, 87
condition number, 91–93
containing all indentical entries, 19
containing all zeros, 18
converting row, column to single index, 32
converting single-index to row, column, 31
cumulative sums of all elements of, 118
cumulative sums of columns, 116
cumulative sums of rows, 117
diagonal, 21
echelon form, 74
eigenvalues and eigenvectors of, 83
equation

solving, 73
exponential of, 114
extracting a column of, 26
extracting a rectangular piece of, 29
extracting a row of, 27
extracting specified rows and columns of, 30
“gluing” together, 23, 24

INDEX OF MATLAB COMMANDS AND CONCEPTS 42

identity, 20
inverse, 75
lower-triangular portion of, 36
LU factorization, 84
minimum of values of, 124
minimum value of each column of, 125
minimum value of each row of, 126
modifying elements given lists of rows and

columns, 33
multiplication, 70

element-by-element, 71
N -dimensional, 39
norm, 90
powers of, 80
QR factorization, 88
rank, 82
re-shaping its elements into a vector, 28
Schur decomposition, 86
singular value decomposition, 85
size of, 131–133, 135, 136
sum

of all elements, 111
of columns of, 112
of rows of, 113

transpose, 72
upper-triangular portion of, 37

max, see min

mean, 94–96
mesh, 228
meshgrid, 105
min, 123–126, 128–130
mind, 127
mkdir, 249
mod, 55, 298
modulo arithmetic, 55, 298
multiple statements on one line, 289

norm, 89, 90
normcdf, 207
normpdf, 201
normrnd, 197
num2str, 280
numel, 135

ode45, 173–175
ones, 17, 19
openvar, 262
optimization, 148–151

path, 292
pause, 283, 284
pcolor, 228, 239, 248
perform some commands with probability p, 185
permutation of integers 1..n, 186

plot, 214–216, 237
Greek letters in axis labels, 232

plot3, 225
poisscdf, 205
poisspdf, 199
poissrnd, 192
polar, 224
polyfit, 153–155
polynomial

least-squares fitted, 154–156
multiplication, 145
roots of, 146

ppval, 157, 159, 160
print, 245–247
probability density functions

binomial, 198
continuous uniform on interval (a, b), 202
discrete uniform from 1..n, 203
exponential, 200
normal, 201
Poisson, 199

qr, 88
quad, 152
quit, 271

rand, 176–184, 190
random values

Bernoulli, 182
binomial, 191
continuous uniform distribution on interval

(a, b), 179, 196
continuous uniform distribution on interval

(0,1), 176–178
discrete uniform distribution from a..b, 184
discrete uniform distribution from 1..k, 181,

194, 195
discrete uniform distribution, 180
exponential, 193
k unique values sampled from integers 1..n,

187
normal, 197
Poisson, 192
setting the seed, 190

randperm, 186, 187
randsample, 187–189
rank, 82
rcond, 91
real, 68
reshape, 35, 39
roots

of general single-variable function, 147
polynomial, 146

INDEX OF MATLAB COMMANDS AND CONCEPTS 43

roots, 146
round, 56
row vector, 6
rref, 74

sampling values from a vector, 188, 189
save, 254
schur, 86
semilogx, 217
semilogy, 217
set, 233
sign, 59
sin, 51
sinh, 53
size, 131–133
slice, 228
sort, 137, 138, 187
spline, 161
splines, see cubic splines
sprintf, 281
sqrt, 45
stairs, 224
standard deviation, see std

startup.m, 293
std, 97–99
stem, 224
stop, 287
strcat, 277
string

concatenation, 276
converting number to, 280
substrings, 278

struct, 43
sub2ind, 32, 33
subplot, 243
sum, 111–113, 166
surf, 226, 227
surfc, 228
surfl, 228
svd, 85
switch, 170

tan, 51
tanh, 53
tic, 286
title, 230
toc, 286
transpose, see matrix
tril, 36
triu, 37

unidcdf, 209
unidpdf, 203
unidrnd, 194, 195

unifcdf, 208
unifpdf, 202
unifrnd, 196
unique, 143, 220

var, 100–102
variables

assigning, 255
assigning in base environment from func-

tion, 256
evaluating from base environment within func-

tion, 257
names, 267

variance, see var

vector
boolean operations on, 139, 140
containing all indentical entries, 17
containing all zeros, 16
counts of binned values in, 144
counts of discrete values in, 143
cumulative sum of elements of, 115
differences between consecutive elements of,

121
minimum of values of, 123
norm, 89
position of first occurance of minimum value

in, 130
reversing order of elements in, 25
size of, 134
sum of all elements, 111
truncating, 34

warning, 288
waterfall, 228
which, 291
while, 169
who, 258
whos, 259–261

xlabel, 231–233

ylabel, 231, 232

zeros, 16, 18

INDEX OF R COMMANDS AND CONCEPTS 44

Index of R commands and concepts

*, 79
/, 77
:, 12, 13
;, 289
<-, 255
<<-, 256
=, 255
?, 1, 2
[[, 41
#, 272
%%, 55, 298
&, 165, 166
^, 46, 81

abs, 47, 65
acos, 52
acosh, 54
all, 167
any, 168
apply, 99, 101, 102, 125, 126
Arg, 66
array, 39
as.character, 280
as.numeric, 143
asin, 52
asinh, 54
atan, 52
atanh, 54
average, see mean

barplot, 218
boolean tests

scalar, 165
vector, 166–168

c, 6, 7
cbind, 23, 33
ceiling, 58
cellular automata animation, 248
chol, 87
class, 266
cloud, 225
coef, 153, 154, 156
colMeans, 95
colon, see :
colormap

building your own, 242
for image, 241

colSums, 112
column vector, 7
comments, 272

complex numbers, 64–69
Conj, 67
contour, 228
convolve, 145
cor, 106–110
cos, 51
cosh, 53
cov, 103–105
cubic splines, 158, 159, 161

natural, 157
periodic, 160

cummax, 120
cummin, 120
cumprod, 119
cumsum, 115–118
cumulative distribution functions

binomial, 204
continuous uniform on interval (a, b), 208
discrete uniform from 1..n, 209
exponential, 206
normal, 207
Poisson, 205

curve, 238

data.frame, 43
dbinom, 198
dev.control, 245, 246, 248
dev.copy, 245, 246
dev.list, 212
dev.off, 213, 245–247
dev.set, 211
dexp, 200
diag, 20–22
diff, 121
differential equations, see lsoda

dim, 35, 133, 136
dir, 251
dir.create, 249
dnorm, 201
dpois, 199
dunif, 202

echelon form, see matrix
eig, 83
element-by-element matrix operations, see ma-

trix
else, 164
errbar, 222, 223
eval, 290
exp, 48

INDEX OF R COMMANDS AND CONCEPTS 45

expand, 84
expand.grid, 228
expm, 114

file
reading data from, 254
running commands in, 252
text

reading data from, 253
saving data to, 254

filled.contour, 240
.First, 293
fix, 262
floor, 57
font size in plots, 233
for, 162
function

multi-variable
minimization, 150
minimization over first parameter only, 149
minimization over only some parameters,

151
single-variable

minimization, 148
user-written, 171

returning multiple values, 172

graphics
not being displayed from scripts/functions,

244
Greek letters

in plot labels, 232
grid, 234

help, 1, 2
help.search, 5
help.start, 4
Hilbert, 38
hist, 144, 218–221

identity, see matrix
if, 163–165
ifelse, 122
Im, 69
image, 239, 248
indexing

matrix, 10
with a single index, 11

vector, 9
install.packages, 295
integrate, 152
inverse, see matrix

jpeg, 247

kappa, 92

.Last, 294

.Last.value, 268
lattice package, 228, 240, 244, 295
layout, 243
legend, 235
length, 34, 134, 135
levelplot, 240, 244
library, 3, 295
lines, 236
lists, 40

extracting elements of, 41
lm, 153, 154, 156
log, 49
log10, 50
log2, 50
lower.tri, 37
ls, 258
ls.str, 259, 261
lsoda, 173–175

.Machine$double.eps, 282
match, 279
matplot, 237
matrix, 8

boolean operations on, 141, 142
changing shape of, 35
Cholesky factorization, 87
condition number, 91–93
containing all indentical entries, 19
containing all zeros, 18
converting row, column to single index, 32
converting single-index to row, column, 31
cumulative sums of all elements of, 118
cumulative sums of columns, 116
cumulative sums of rows, 117
diagonal, 21
echelon form, 74
eigenvalues and eigenvectors of, 83
equation

solving, 73
exponential of, 114
extracting a column of, 26
extracting a rectangular piece of, 29
extracting a row of, 27
extracting specified rows and columns of, 30
“gluing” together, 23, 24
identity, 20
inverse, 75
lower-triangular portion of, 36
LU factorization, 84
minimum of values of, 124

INDEX OF R COMMANDS AND CONCEPTS 46

minimum value of each column of, 125
minimum value of each row of, 126
modifying elements given lists of rows and

columns, 33
multiplication, 70

element-by-element, 71
N -dimensional, 39
norm, 90
powers of, 80
QR factorization, 88
rank, 82
re-shaping its elements into a vector, 28
Schur decomposition, 86
singular value decomposition, 85
size of, 131–133, 135, 136
sum

of all elements, 111
of columns of, 112
of rows of, 113

transpose, 72
upper-triangular portion of, 37

matrix, 8, 18, 19
max, see min

mean, 94
min, 123–126, 129
Mod, 65
modulo arithmetic, 55, 298
multiple statements on one line, 289

names, 42, 143
ncol, 132
norm, 89, 90
nrow, 131

optim, 150, 151
optimization, 148–151
optimize, 148, 149
options

digits=, 270
outer, 227

packages
installing, 295
loading, 295

par, 233
par

mfcol=, 243
mfrow=, 243

parse, 290
paste, 276, 277
pbinom, 204
pdf, 233, 245
perform some commands with probability p, 185
permutation of integers 1..n, 186

persp, 226, 227
pexp, 206
pie, 224
plot, 214–217

Greek letters in axis labels, 232
main=, 230
sub=, 230
xlab=, 231, 232
xlim=, 229
ylab=, 231, 232
ylim=, 229

pmin, 127, 128
pnorm, 60, 61, 207
points, 236
polynomial

least-squares fitted, 154–156
multiplication, 145
roots of, 146

polyreg, 155
polyroot, 146
postscript, 246
ppois, 205
print, 244, 273, 274
probability density functions

binomial, 198
continuous uniform on interval (a, b), 202
discrete uniform from 1..n, 203
exponential, 200
normal, 201
Poisson, 199

proc.time, 285, 286
punif, 208

q, 271
qnorm, 62, 63
qr, 82, 88
quartz, 210
quit, 271

rand, 183
random values

Bernoulli, 182
binomial, 191
continuous uniform distribution on interval

(a, b), 179, 196
continuous uniform distribution on interval

(0,1), 176, 178
continuous uniform distribution on inteval

(0,1), 177
discrete uniform distribution from a..b, 184
discrete uniform distribution from 1..k, 181,

194, 195
discrete uniform distribution, 180

INDEX OF R COMMANDS AND CONCEPTS 47

exponential, 193
k unique values sampled from integers 1..n,

187
normal, 197
Poisson, 192
setting the seed, 190

rbind, 24
rbinom, 191
rcond, 91, 93
.RData, 293
Re, 68
read.table, 253, 254
rep, 16, 17
rev, 25
rexp, 193
rgb, 242
rm, 263–265
rnorm, 197
roots

of general single-variable function, 147
polynomial, 146

round, 56
row vector, 6
rowMeans, 96
rpois, 192
.Rprofile, 293
runif, 176–182, 184, 196

sample, 186–189, 194, 195
sampling values from a vector, 188, 189
scan, 275, 284
Schur, 86
sd, 97–99
seq, 14, 15
set.seed, 190
setwd, 250
sign, 59
sin, 51
sinh, 53
solve, 73, 75, 76, 78
sort, 137, 138
source, 252
spline, 157, 158, 160
splines, see cubic splines
split.screen, 243
sprintf, 281
sqrt, 45
standard deviation, see sd

str, 260
string

concatenation, 276
converting number to, 280
substrings, 278

substr, 278
sum, 111, 113, 166
svd, 85
switch, 170
symbols, 228
Sys.sleep, 283

t, 72
table, 143
tan, 51
tanh, 53
title, 230, 231
transpose, see matrix

uniroot, 147
upper.tri, 36

var, 100–102, 104
variables

assigning, 255
assigning in base environment from func-

tion, 256
evaluating from base environment within func-

tion, 257
names, 267

variance, see var

vector
boolean operations on, 139, 140
containing all indentical entries, 17
containing all zeros, 16
counts of binned values in, 144
counts of discrete values in, 143
cumulative sum of elements of, 115
differences between consecutive elements of,

121
minimum of values of, 123
norm, 89
position of first occurance of minimum value

in, 130
reversing order of elements in, 25
size of, 134
sum of all elements, 111
truncating, 34

vector, 40

warning, 288
which, 140–142
which.max, see which.min

which.min, 130
while, 169
windows, 210
wireframe, 228
write, 254

x11, 210

