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Introduction
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Statistics in the hands of an engineer are like a lamppost to a 
drunk – they're used more for support than illumination. 

- A. E. Housman.
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Block maxima approach – data modelled using GEV distribution:
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Peaks Over Threshold (POT) approach – data modelled using GPD distribution:
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Peaks Over Threshold (POT) approach – data modelled using GPD distribution:
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Differences in the approaches:
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Extreme Value Methods IV
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Choice between the approaches:

• Gives different results

• Often subjective

• Difficult to assess best model

As the GEV and GPD are different distributions:

• They are non-nested models

• Cannot calculate a statistical significance of differences



Box-Cox GEV Distribution I
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The BCGEV distribution:

• Introduced by Bali (2003) for use in economic modelling

• Includes both GEV and GPD distributions through a model parameter, λ

• Maintains the usual GEV/GPD parameter set, ( µ, σ, ξ ):
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Thus, as:

• ,   BCGEV → GEV distribution

• ,   BCGEV → GPD distribution (by L’Hopital’s rule)

1λ →

0λ →

Benefit: GEV and GPD are now nested models and can be compared statistically.
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Application of the BCGEV model:

• A high threshold is set - about 2 standard deviations above the mean of the 
parent data

• Data arranged sequentially: s1 ≤…sr≤…sn
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Minimize the sum of the squares of the residuals (SSR), Ση2

Estimation of BCGEV:

• Maximum likelihood estimation not robust, so

• Non-linear regression estimation used:
Residual



Bridge Traffic Loading I
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• Using real traffic measured using Weigh-In-Motion

• Traffic characteristics are statistically modelled

• Monte Carlo simulation allows more traffic to be studied

• Load effects are calculated using influence lines of interest



Bridge Traffic Loading II
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3 load effects considered:

• LE1 – moment at B;

• LE2 – moment at E;

• LE3 – shear at A.

• 5 days of data from the A6 Paris-Lyon motorway is used as basis

• A 1000-day Monte Carlo traffic sample is generated

• Thus 1000 daily maximum static load effects

• Consider 5 bridge lengths of 20, 30, 40, 50, 60 m

The optimal statistical extrapolation of this data set to determine lifetime load 
effect is what is considered in this work.



Bridge Traffic Loading III
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In bridge traffic loading, different loading event types occur:

1-truck

2-truck

3-truck

These loading events have different statistical distributions…

Use a composite distribution of load effect (Caprani et al 2008):
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Basis of BCGEV Analysis
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For 3 load effects, 5 bridge lengths and each loading event type,

There are 41 data sets to be modelled.

11 thresholds are applied to the daily maximum data: 

• In 0.5 standard deviation steps 

• From k = -2.5 to k = +2.5 standard deviations about the mean

BCGEV model:

• Estimation of ‘model parameter’, λ is not robust

• Thus λ varied from 0 to 1 in 0.01 steps

• Best fit of remaining parameters then found for each λ.



Optimum BCGEV Parameters
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The mean SSR of the 41 data sets for each λ and threshold are taken to give:

Thus best fit on average is:

• Threshold, k = -1.5

• Model Parameter, λ = 0.98

Also:

• Best fit model parameter 
always 0.9 < λ < 1.0

• Thus GEV better than GPD
for bridge traffic loading?



Likelihood Ratio Test I
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Using the LR test which applies to nested models:

• Determine of GEV or GPD (or neither) better represents the data

• Calculate the statistical significance of the representation

Calculate:

• Standard Error of Regression (SER) – the mean error per data point: SSR/n

• The LR statistic then is:

( )LR logSER logSERP Fn= −

Where:

• P – SER of partial model fit (GEV or GPD)

• F – SER of full model fit (BCGEV)



Likelihood Ratio Test II
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This LR statistic is approx. χ2- distributed with 1 degree of freedom:

• For 95% significance level - critical value is 3.842

• For 99% significance level - critical value is 6.635

Hypothesis: partial model adequately represents data:

• Reject if LR statistic greater than critical value at chosen significance level
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Significance Testing I
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For the GEV distribution:
NB: Reject hypothesis if 
LR statistic > critical value

Thus:

• GEV not statistically 
significant for most 
thresholds

• For about k = +1.5 and 
above, GEV is 
significant (shaded area)



Significance Testing II
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For the GPD distribution:
NB: Reject hypothesis if 
LR statistic > critical value

Thus:

• GPD not statistically 
significant for all
thresholds
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Load Effect Prediction I
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For each span and load effect, extrapolate the BCGEV fit:
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Load Effect Prediction II
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The BCGEV distribution predictions of lifetime load effect by threshold:
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Load Effect Prediction III
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Comparison of different prediction methods:

• Conventional: GEV model, ignoring different loading event types

• GEV: using CDS to account for different loading event types

• BCGEV, k = -2.5: considers all data and uses CDS

• BCGEV, k = -1.5: the ‘global optimum’ threshold identified previously

Comparison with GPD not included as the best fit model parameter λ was never 
found to be close to zero for this data.



Load Effect Prediction IV
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Comparison of different prediction methods:
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Conclusions I
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• The Box-Cox-GEV model allows the data to determine the appropriate form 
of extreme value analysis.

• The BCGEV model has been extended with Composite Distribution Statistics 
(CDS) to account for the different loading event types.

• The BCGEV model is a better fit than the GEV and GPD models with 
considerable statistical significance, for almost all thresholds considered.

• Bridge traffic load effect data lies strongly in the domain of the GEV
distribution.



Conclusions II
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• An optimum threshold level to apply to daily maximum load effect has been 
identified, k = -1.5.

• The BCGEV model is stable for k < 0, i.e. thresholds below the mean daily 
maximum load effect.

• The BCGEV model gives slightly higher lifetime load effect predictions that 
other methods.

• The BCGEV model predictions were found to be more sensitive to different 
loading event types than other models.

Overall Conclusion:

The BCGEV model is more flexible and so more sympathetic to the data, 
giving increased confidence to load effect predictions.
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