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ABSTRACT

To assess the safety of an existing bridge, the loads to which it may be subject in its 

lifetime are required. Statistical analysis is used to extrapolate a sample of load effect

values from the simulation period to the required design period. Complex statistical 

methods are often used and the end result is usually a single value of characteristic load 

effect. Such a deterministic result is at odds with the underlying stochastic nature of the 

problem. In this paper, predictive likelihood is shown to be a method by which the 

distribution of the lifetime extreme load effect may be determined. An estimate of the 

distributions of lifetime maximum load effect facilitates the reliability approach to 

bridge assessment. Results are presented for some cases of bridge loading, compared to

a return period approach and significant differences identified. The implications for the 

assessment of existing bridges are discussed.
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1. INTRODUCTION

To assess the safety of structures, it is necessary to have estimates for the load or load 

effect to which it is subject. Statistical approaches are commonly adopted as the tools

through which loads with an acceptably small probability of exceedance are determined. 

The assessment of existing bridges is a particular case when such analyses are very

useful. In general, it is particularly expensive to repair or replace deteriorated bridges 

due to the cost of the new structure, disruption to traffic and the cost of resulting delays. 

Large savings may be made by proving that many bridges are safe without intervention

and statistical analysis of bridge loading facilitates this.

The estimation of loading usually involves the following steps. At the site of interest, a 

Weigh-In-Motion (WIM) system is used to measure the traffic characteristics of the site. 

After sufficient traffic data has been measured, the statistical distributions for the traffic 

characteristics are determined. These distributions then form the basis for Monte Carlo 

simulation of vehicle traffic at the site – such simulations may be carried out for a much 

longer period than is practical to record. The use of Monte Carlo simulation facilitates 

the occurrence of unobserved values of traffic characteristics whilst remaining faithful 

to the original observations. However, some authors proceed directly from measured 

traffic to estimate load effect (see for example, [1] and [2]). The generated vehicle 

traffic is then processed using influence lines to give a population of load effects.

Finally, an extreme value form of analysis is performed on these results and used to 

estimate the load effect with an acceptably small probability of exceedance. For 

example, the Eurocode for bridge loading [3] requires that the design load effect be 

calculated for a 1000-year return period. This is commonly interpreted as the load effect 
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that has an approximate probability of exceedance of 10% in a 100-year design life. If

the design life is taken as 100 years, the objective is to best estimate the distribution of 

100-year (lifetime) load effect, so that (among other things) its 90th-percentile 

(approximately the 1000-year level) can be established.

The characteristic value for some long return period is a function of the parameters of 

the distribution chosen to represent the population of load effect. These parameters are 

estimated from a sample of load effect and are therefore subject to variability. Indeed,

even if data could be obtained for the full return period, the inherent variability of traffic 

loading means that, in general, another such set of data would result in another 

characteristic value. Of course, there must be some particular value of load effect which 

has, for example, a 10% probability of exceedance in 100 years, but such a value needs

to be derived from a distribution which takes into account many sources of variability.

Various methods exist in the statistical literature for calculating such distributions – the

delta method [4] and bootstrapping [5] being two. However predictive likelihood has 

advantages over these as it balances possible predictions against the observed data and 

can account for more sources of variability.

There has been a focus in many previous studies (including the background work for the 

Eurocode [3]) on the calculation of characteristic load effect for a specified return 

period (e.g., 1000 years). This paper demonstrates that, with the application of 

predictive likelihood [6] to the same data, an estimate of the distribution of maximum-

in-lifetime (e.g., 100 years) load effect can be determined. This provides considerably 

richer information to complement the single value of characteristic load effect. It has 

particular potential for use in reliability theory [7].
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2. LOAD EFFECT PREDICTION

Conventional Extrapolation Procedure

Usually, for a particular site, Monte Carlo simulation of statistically modelled traffic is 

carried out for a bridge(s) and load effect(s) of interest. The resulting load effect data is 

then used as the basis of an extreme value theory analysis [8]. Whilst the Peaks-Over-

Threshold approach is applicable, the block maxima approach [4] is used in this study. 

A suitable period in which a sufficient number of loading events occur is required for 

convergence to an extreme value distribution and in this work a period of one day is 

used as it meets stationarity requirements [9].

To model the daily-maxima, the Generalized Extreme Value (GEV) distribution [4],

[10]–[11] is used. This can be shown to incorporate the three asymptotic distributions of

[12]. Its cumulative distribution function is:

1/

; exp 1
y

G y (1)

where max( ,0)h h and the parameter vector is , , – the location, scale 

and shape parameters respectively. The probability density function (PDF) is:

1/ 1

1; ; 1
y

g y G y (2)

Maximum likelihood estimation is based on maximisation of the likelihood function:
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in which ;f y is the probability density function of the chosen model and iy is an 

observed data point. Usually the log-likelihood function is used, which for the GEV 

distribution, is [4]:

1

1 1

log ; ;

1
log 1 log

y y

n n

i i

i i

L y l y

n y y
(4)

In equation (4), the subscripts y indicate reliance on the data, of which iy is an 

individual observation. The major benefit of using this distribution is that, through 

inference on , the data determines the correct tail behaviour, avoiding the need to 

make a subjective a priori judgement on which Fisher-Tippett [12] extreme value form

to adopt [4].

The sample daily maxima load effect values are used to make inference on the 

distribution of the daily maxima load effect. Maximum likelihood estimation is used 

here as it yields information of further use and is a best asymptotically normal estimator

[13]. Considering there to be 250 working days per year, the 1000-year return period (as 

used in the Eurocode [1]) corresponds to a probability of 1:250 000. An example of 

such extrapolation is shown in Figure 1 on Gumbel probability scale [14].
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Bridge Load Prediction

Authors have used many different methods to predict the lifetime bridge load effect

from measured or simulated load effect data. In many studies by Nowak and others 

[15]–[18] straight lines are superimposed on the tails of the distributions and

extrapolated to determine the characteristic load effect values. In other studies by 

Nowak [2], [19], curved lines on normal probability paper are used for the 

extrapolation. Based on measured traffic samples [20]–[21] consider and compare 

several methods of extrapolation of the basic histogram of load effect. Grave et al [22]

use a weighted least-squares approach to fit Weibull distributions to load effect values. 

This process is repeated to give an estimate of the distribution of characteristic values. 

These authors use the upper 2 n data points as recommended by Castillo [11] for data 

that may not be convergent to an extreme value population. Bailey and Bez [23]–[24]

determine that the Weibull distribution is most appropriate to model the tails of the load 

effect distributions and used maximum likelihood estimation. Cooper [1], [25], uses 

measured truck loading events to determine the distribution of load effect. The author 

raises this distribution to a power to establish the distribution of the maximum load

effect from 4.5 days of traffic. This is fit with a Gumbel distribution which is used to 

extrapolate to a 2400 year return period. Crespo-Minguillón and Casas [26] adopt a 

Peaks-Over-Threshold approach and use the Generalized Pareto Distribution to model 

the exceedances of weekly maximum traffic effects over a certain threshold. An optimal 

threshold is selected based on the overall minimum least-squares value and it is the 

distribution that corresponds to this threshold that is used as the basis for extrapolation.
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A wide range of methods are used in the literature. While parameter uncertainty is 

considered by some (for example, [27]), the variability of the characteristic load effect 

is not generally assessed.
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3. PREDICTIVE LIKELIHOOD

Fisherian Predictive Likelihood

Given a set of observations, parametric statistical inference requires the selection of a 

statistical model and estimation of the parameters of that model, that best represent the 

data. For a given model, there are many possible parameter vectors, , representing 

many possible distributions. Using the maximum likelihood estimator, the most likely 

distribution, ˆ , given the data, y , is that which maximizes the likelihood function. 

From this parameter vector, the maximum likelihood estimate of the characteristic 

value, z (the predictand), is identified for a given probability level. The predictand 

itself is a random variable since it is any possible realization of the characteristic value. 

Therefore it has the domain of the set of all real positive numbers. Predictive likelihood 

finds the most likely distribution, given both the data and a postulated possible 

realization of the predictand value. It does this by maximising the likelihood functions 

of the data, yL , and the predictand, zL , jointly:

| sup ; ;P y zL z y L y L z (5)

Equation (5) represents the Fisherian predictive likelihood [28] (also termed profile 

predictive likelihood), PL . Predictive likelihood can therefore be viewed as a method 

which ‘ranks’ possible realizations of the predictand according to how likely they are to 

occur given the data. This ‘ranking’ results in the predictive distribution.
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An example is illustrated in Figure 2. A random data sample from a GEV distribution 

with parameter vector 300,20,0.1 is fit using maximum likelihood estimation. 

This is shown in Figure 2(a) as the solid black line. This stipulated distribution of the 

data is shown in Figure 2(b) along with the distribution of the lifetime-maximum load 

effect. Denoting the PDF of the data by g , the likelihood function for the data vector, 

y is:

1

; ;
n

y i

i

L y g y (6)

For a postulated value of z, and denoting the PDF of the predictand by zg , the

likelihood function is:

; ;z zL z g z (7)

as there is only a single value, z. Similarly to maximum likelihood estimation, it is 

easier to use the log-likelihoods – maximization of this function is equivalent to 

maximization of the likelihood function itself. Therefore, equation (5), in conjunction 

with equations (6) and (7), is written as:

1

| log |

sup log ; log ;

sup log ( ; ) log ( ; )

P P

y z

n

i z

i

l z x L z y

L y L z

g y g z

(8)
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For a given predictand (at a probability of 0.99 in the example), the joint likelihood of 

both the data and predictand is maximized. By repeating the process for a range of 

alternative possible predictands, a range of possible distributions are found. The 

predictive likelihood values, obtained from equation (8), for ten values of predictand are 

shown in Figure 2(a). For each of the predictive likelihood maximizations, the ten GEV 

fits to the data are also shown in that figure. It is to be noted that these distributions are 

not ‘forced’ to go through the predictand as the distribution results from ‘balancing’ 

both the data and the predictand.

The value of this approach is that additional information is available: for each 

predictand, the maximized predictive likelihood value is available from equation (8). 

Their relative values provide the predictive distribution. The calculation of this

predictive distribution – ;
PLf z y – is explained later (equations (18)-(21)) but an 

example is shown in Figure 2(a). It can be seen from Figure 2(a) that the most likely 

value of the predictand from the predictive likelihood distribution (its mode) coincides, 

as expected, with the maximum likelihood estimate of the predictand.

Modified Predictive Likelihood

Mathiasen [29] notes some problems with Fisherian predictive likelihood. Of particular 

relevance to this work is that each function maximization does not account for the 

variability of the derived parameter vector, .

Many forms of predictive likelihood have been proposed in the literature to overcome 

the problems associated with the Fisherian formulation. In this work, the predictive 

likelihood method proposed by Butler [30], based on that of Fisher [28] and Mathiasen 
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[29] and also considered by Bjørnstad [6], is used. Lindsey [31] describes the reasoning 

behind its development. This predictive likelihood is the Fisherian, modified so that the 

variability of the parameter vector resulting from each maximization is taken into 

account.

Likelihood is a multi-dimensional function of the parameters of the parent distribution 

(components of ). Edwards [32] describes the meaning of the likelihood (multi-

dimensional) surface at the point of maximum likelihood. In particular, the determinant 

of the Fisher information matrix, , (the Hessian matrix of the likelihood 

function) may be seen as the volume under the (multi-dimensional) surface of the 

likelihood function at the maximum likelihood estimate (MLE). A narrow likelihood 

function indicates more confidence (information) about the parameter values. Therefore 

larger volumes (determinants) represent less information and vice versa.

Mathematically, it is the absolute value of the determinant that is taken as volumes 

cannot be negative. Further, it is the square root of the determinant that is used as a 

measure of the variability of the parameter vector in the region of the estimate as 

described by Edwards [32]. Hence, this metric, z , forms a measure of 

credibility for a given parameter vector. To allow for the effect of parameter variability 

on Fisherian predictive likelihood, this metric is used to weight each value of Fisherian 

predictive likelihood obtained (for the parameter vector of each predictand considered). 

In this way, the variability of the parameters is allowed for, in a relative sense. As the 

resulting function is normalized to a distribution, this relative measure is adequate.

One further modification is required to the Fisherian predictive likelihood. The 

parameter vector determined for each value of the predictand is dependent on both the 
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data and the predictand (denoted z ). A modification, termed the parameter transform 

modification is required so that the problem is in the domain of the ‘free’ parameter 

vector, , which is reliant only upon the data. Thomasian [33] provides further 

information on parameter transformations. That which is relevant here is z .

Allowing for these modifications to the Fisherian predictive likelihood, the modified 

profile predictive likelihood ( MPL ) is given as:

| ;
|

P z

MP

z
z

L z y
L z y (9)

Butler [30] points out that the parameter transform z is constant. Therefore 

normalization of the area under | ;P z zL z y amounts to evaluation of 

z and hence |MPL z y yields the predictive density of the predictand, 

;
PLf z y .

Bridge Traffic Load Effect Formulation

Bridge traffic loading does not generally provide an homogenous (or independent and 

identically distributed) population of data. Caprani et al [34] have shown that bridge 

load effects are caused by a mixture of different types of loading event such as 1-truck 

and 2-truck loading events. These different loading event types each have a different 

distribution of load effect. The distribution of daily maximum load effect is derived 

from the theorem of total probability to be:
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1

( )

dn
N

j j

j

P Y y F y f (10)

where Y is the daily maximum load effect; y is the level of interest; jF is the parent 

distribution of load effect for event-type j which has relative frequency of occurrence 

jf , and; dn is the number of events that occurs in a day. The maximum number of 

event types is N. Hence, j df n is the expected number of events of type j that occur each 

day. Caprani et al [34] show that equation (10) asymptotically approaches a composite 

distribution of daily maximum load effect. For the N different types of loading event, 

the composite distribution, CG , of daily maximum load effect is given by:

1

N

C j

j

G y G y (11)

where jG is any extreme value distribution fit to the daily maximum load effect data 

caused by loading event type j. Considering that, in this work, the GEV distribution 

(equation (1)) is used to model the distribution of daily maximum load effect for each of 

the event types, equation (11) becomes:

1/

1

exp 1

j
N

j

C j

j j

y
G y (12)



15

This approach is termed Composite Distribution Statistics (CDS). It is possible to use 

CDS to account for the different types of vehicle that comprise the traffic stream, but 

this is not done in this work. For the purposes of calculating likelihoods, the composite 

probability density function, Cg y , is evaluated numerically in this work.

Caprani [9] shows that the parent distribution of load effect, for a wide range of bridge 

lengths and load effects, is well described by the GEV distribution. Therefore, by the 

stability postulate, each loading event-type only needs to occur at least once in a day in 

order that its distribution of daily maximum load effect can be described by the GEV 

distribution. Thus, to determine the distribution of lifetime load effect from equation 

(11), we assume that each loading event type occurs at least once (and once is sufficient, 

as just explained) in each day. When this is the case, the distribution of maximum load 

effect in m days, for the individual loading event-type j is:

,

m

Z j jG y G y (13)

Thus the joint probability of occurrence of the level of interest y, when all loading event

types are considered, is:

, 1

1

N
m mm m m

Z C j N j C

j

G y G y G y G y G y G y (14)

Thus the distribution of a maximum of m sample repetitions is given by equation (11)

raised to the power m, as expected. The probability density function of equation (14) is 

thus:
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1

,

m

Z C C Cg z m g z G z (15)

The likelihood of the data for the CDS distribution is defined in this work to be the joint 

likelihood of each of the mechanisms of the CDS distribution:

1/

,

1 1

log ; ;

1

j
j

y y

nN
j i j

j

j i j

L y l y

y (16)

where jn is the number of data points for each event type; ,j iy is the ith data point of 

event type j, and; , ,j j j j is the parameter vector for each jG . Based on 

equation (15), the likelihood of the predictand, given the initial distribution is:

,

1

log ; log

log

z Z C

m

C C

L z g z

m g z G z
(17)

Thus the distributions required for use in the predictive likelihood approach have been 

defined with consideration to the underlying stochastic process.

Establishing the Predictive Distribution

Curves of log-predictive likelihood are used to determine the predictive distribution,

;
PLf z y . Firstly, the log-predictive likelihoods are defined as:



17

| log |MP MPl z y L z y (18)

and its maximum value is defined as:

ˆ | sup log |MP MP
z

l z y L z y (19)

Then, the curve of likelihood ratios is determined as:

* ˆ; exp | |
PL MP MPf z y l z y l z y (20)

This curve is then normalized to the predictive distribution:

*

*

;
;

;

P

P

P

L

L

L

f z y
f z y

f z y
(21)

Save for Davison [35], the statistical literature on predictive likelihood does not 

generally consider its implementation. Numerical instability is a feature of predictive 

likelihood function maximization; the details of the algorithm used to address these 

problems is given by [9] and [36].
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4. APPLICATION

Theoretical application

Distributions that reflect the usual relationship between loading events are described by 

Caprani [9] and given in Table 1. Samples from these distributions are used to simulate 

the statistical analysis of bridge traffic loading. These examples are used here to assess 

the accuracy of the composite distribution predictive likelihood. Two random data 

samples of 1000 points are generated and predictive likelihood analyses are performed. 

The results are assessed against the exact distribution of lifetime load effect, calculated 

from equation (10) with the problem parameters given in Table 1. We consider the 

distribution of load effect for a 100-year design life. The final design load effect will 

therefore be the 90th percentile value of this distribution (that is, the load effect with 

approximately 10% probability of exceedance in 100 years).

Figure 3 shows the results of the application of predictive likelihood to the two 

generated data sets. It can be seen that different calculated distributions of lifetime load 

effect are estimated for the different samples. However, this is not surprising as in any 

analysis the data is the only incontrovertible evidence and different data will result in a 

different prediction. Both distributions compare reasonably well with the exact 100-year 

return level distribution determined from equation Error! Reference source not found.

(10): the mode of the exact distribution is well approximated by the predictive 

likelihood distribution. The tails are not approximated as well. Considering that the 

predictive likelihood distribution modes are to the left of the exact mode, predictive 

likelihood does not appear to be unduly sensitive to the particular sample obtained. The 

estimation of the design load effect, represented by the 90th-percentile of the lifetime 
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distributions of load effect, determined through the use of predictive likelihood, are

conservative compared with that of the exact distribution. Of course, the particular value 

of design load effect is sample-dependent.

Application to Bridge Loading

WIM data, taken from the A6 motorway near Auxerre, France, is used to assess the 

implications of predictive likelihood on the estimation of characteristic bridge traffic 

loading. Weight and dimensional data were collected for 36 373 trucks travelling in the 

two slow lanes of the 4-lane motorway. The statistical models of the traffic 

characteristics provided input to Monte-Carlo simulations of traffic at the measured site. 

The distribution for headways, in particular, was found to be important and is modelled 

as described by OBrien and Caprani [37]. In this paper, we do not consider traffic 

growth as part of the problem, and so the statistical model is based on a stationary 

process.

A 1000-day sample period of two-lane bi-directional truck traffic is generated and the 

resulting load effects are determined for bridge lengths in the range 20 m to 50 m. The 

particular load effects considered are:

Load Effect 1: Bending moment at the mid-span of a simply supported bridge;

Load Effect 2: Left support shear in a simply-supported bridge;

Load Effect 3: Bending moment at central support of a two-span continuous 

bridge.

To minimize computing requirements only significant crossing events were processed 

and are defined as multiple-truck presence events and single truck events with Gross 

Vehicle Weight (GVW) in excess of 40 tonnes. When a significant crossing event is 
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identified, the comprising truck(s) are moved in 0.02 second intervals across the bridge 

and the maximum load effects of interest for the event identified.

The load effects resulting from the 1000-day simulation of Auxerre traffic are analysed 

using predictive likelihood and the results are given in Table 2. Unfortunately the 

information matrices exhibited considerable numerical instability and so the 

modification of predictive likelihood for parameter variability could not be made to the 

results presented. However, for some stable problems, Caprani [9] finds that the 

allowance for parameter variability only slightly affects the final predictive distribution. 

In any case, the basic Fisherian predictive likelihood distribution is informative about 

the distribution of lifetime load effect.

Sample predictive distributions of 100-year lifetime-maximum load effect are presented 

in Figure 4 and Figure 5. Also shown is a GEV fit to the predictive distribution. The 

GEV distribution is reasonable as it is sufficiently flexible and by virtue of the stability 

postulate [8] is the exact form of distribution of the lifetime load effect (or return level, 

RL). Further, the load effect with 10% probability of exceedance in 100 years is 

indicated, both for the predictive likelihood points (PL RL) and the GEV fit to these 

points (GEV PL fit). Also given in each figure is the 1000-year maximum likelihood 

estimate of the return level (CDS RL), derived from the CDS distribution.

Some of the GEV fits to the raw predictive likelihood points are not obtained through 

fully objective means. In such cases, the approach is to fit the upper tail more closely 

than either the lower tail or the mode. Due to the numerical nature of the predictive 

distributions themselves, such GEV fits may be considered as a smoothing process. In 
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any case, the results have been derived from both the fits and the raw distributions and 

may be seen to be comparable from Table 2 – the differences are generally negligible, 

the maximum difference being about 3% for Load Effect 2, 40 m bridge length.

Comparison of the predictive likelihood results with the 1000-year CDS results are 

given in Figure 6. Of significance is the fact that the usual method of extrapolation to a 

1000-year return period results in general non-conservative results (with the exception 

of Load Effect 2, 40 m bridge length), compared with either of the predictive likelihood-

based results. However, the differences are not substantial. Further, in the light of the 

results of the theoretical example, it may be surmised that the predictive likelihood 

results are closer to the actual lifetime load effect than those of the more usual CDS 

extrapolation technique.

Given the differences between the predictive likelihood result (100-year with 10% 

probability of exceedance) and the conventional CDS result (1000-year return period), it 

is apparent that these two definitions of probability level are no longer equivalent. This 

has implications for the specification of acceptable probabilities and the manner in 

which practitioners estimate the associated design levels.
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5. SUMMARY

The method of predictive likelihood is presented and applied to the bridge loading 

problem. An extension of predictive likelihood is presented which caters for composite 

distribution statistics problems. This method is applied to problems for which the results 

are known and the result found to be good. The method is then applied to the results of 

bridge load simulations. Predictive likelihood generally gives larger lifetime load effect 

values than the usual return period approach. This is as a result of inclusion of sources 

of variability within the predictive likelihood distribution. The differences in lifetime 

load effects are considerable, yet within reason, and are also dependent on the influence 

line and bridge length. This is to be expected from the physical nature of the problem.

The application of predictive likelihood is shown to require strict definition of 

acceptable safety levels, as the more usual return period definition does not yield the 

same results in general. This will have implications for practitioners and code 

definitions. Also, it is shown that in comparison to the return period approach, which 

generates a single predictand, the predictive likelihood distribution represents a 

considerable increase in the information gained from a sample. This increase in 

information represents more confidence about the result in comparison with the return 

period approach. Therefore predictive likelihood is a valuable tool in estimating 

distributions of extremes of stochastic processes.
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Table 1: Parameters of mechanisms for theoretical example. 

Table 2: Table of predictive likelihood results.

Figure 1: Sample extrapolation procedure showing data and GEV fit.

(a) Sample predictive likelihood analysis;

(b) Parent distribution and distribution of maxima for ;300, 20,0.1G y ;

Figure 2: Empirical description of predictive likelihood analysis.

Figure 3: Predictive likelihood result for Study 1.

Figure 4: Characteristic load effect prediction for Load Effect 1, 30 m bridge length (see 

text for details). 

Figure 5: Characteristic load effect prediction for Load Effect 3, 40 m bridge length (see 

text for details).

Figure 6: Differences in the CDS return period characteristic load effect prediction 

relative to the GEV fit to the predictive likelihood results.



Table 1: Parameters of mechanisms for theoretical example.

1-truck 2-truck 3-truck 4-truck

0.06 0.09 0.28 0.21

1.41 2.37 9.99 22.76

71.93 100 67.42 21.92

d jn f 3102 2566 517 19

Table 1



Table 2: Table of predictive likelihood results.

Load

Effect

Bridge

Length

(m)

Characteristic Load Effect Percentage difference
a

PL
b

GEV
c

CDS
d

GEV CDS

1

20 4074 4073 4067 0.0 -0.2

30 7830 7827 7852 0.0 0.3

40 10814 10801 10701 -0.1 -1.0

50 14150 14173 13893 0.2 -1.8

2

20 1074 1074 1067 0.0 -0.6

30 1636 1641 1643 0.3 0.4

40 2841 2854 2921 0.5 2.8

50 3825 3839 3785 0.4 -1.1

3

20 927 926 922 -0.1 -0.6

30 969 969 963 0.0 -0.6

40 1153 1187 1079 2.9 -6.5

50 1235 1253 1185 1.4 -4.0
a

Relative to numerical PL results; 

b
90-percentile of 100-year distribution based on predictive likelihood points;

c
90-percentile of 100-year distribution GEV fit to predictive likelihood points;

d
1000-year return level based on CDS extrapolation.

Table 2
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