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Introduction 
 
 
The aim of this research was to compare the calculated deflection between 
the joints of a continuous beam. The methods employed to find this were 
Macaulay brackets, virtual work and Mohr’s moment-area theorem. These 
were all carried out subsequent to a stiffness analysis of a given beam. 
 
The problems encountered which we had to over come were: 
 

• No previous knowledge of the stiffness analysis approach. 
• We had not analysed 4 degree indeterminate structures, to any great 

detail, beforehand. 
• We were not sure how to find the deflection of such a beam using the 

methods listed above. 
 
In order to better understand these concepts, we carried out a great deal of 
literature research and review. 
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Stiffness Analysis 
 
 
Most structural analysis programs are based on the stiffness method. It is a 
repetitive, step-by-step method which is why computers handle it so well. 
However, for this very reason, when carrying out a stiffness analysis by hand, 
it can be quite cumbersome and the matrices become very large. Below is an 
example of a stiffness analysis for a continuous beam with 3 nodes. As can 
be seen, if the number of nodes was to increase or the support types were 
different, the matrix would become extremely big and difficult to handle, 
possibly leading to errors. The method used below is as outlined in Caprani 
(2008). 
 
 
Example: 
 

 
 
 

Firstly we construct the global matrix and restrict it. 
We know that there can be no vertical displacement, horizontal displacement 
or rotation at nodes 1 or 3. Also, there can be no vertical or horizontal 
displacement at node 2. Therefore, the only degree of freedom is the rotation 
at node 2. 
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From the above matrix configuration it can be seen that the system restricts 
as follows: 
 
 

[ ]{ } { } { }∑ θθ −=θ 22222 Rwa  

Equation 1 
 

 
Member Contributions: 
 
 
a22 = (term 3-3 of K2212) + (term 3-3 of K1123) 
 
Where the K values are obtained from the member stiffness matrix. 
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Fixed-end Reactions: 
 
 
These only apply to member 23 because it is the only loaded member. 
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Where ∑ θ2R = moments that are applied to node 2 by the member loads 

 
There are no externally applied moments therefore, w2θ = 0. 
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Solve Equation: 
 
 
Subbing the values into Equation 1 we get: 
 
 

{ } { }








−=θ








12
wL

0
L
EI8 2

2  

 

EI96
wL3

2 −=θ⇒  

 
 
 
Member End Forces: 
 
Using the following formula we will find the member end forces: 
 

1212 12121121 R12K11KP +δ+δ=  
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With this information we can determine the shear forces and draw the BMD. 
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Shear Forces on Member 12: 
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Shear Forces on Member 23: 
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16
wL7

V R,2 =∴  

 
 

Using this information we can draw the SFD: 
 
 

 
 
 

The beam is now fully analysed and the results of this stiffness analysis will 
be used to carry out the remainder of the project. 
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In order to try and confirm these results, a virtual work analysis of the beam 
was undertaken. This is out lined as follows in accordance with Caprani 
(2008). 
 
Example: 
 
Because the structure is more than one degree indeterminate it must be 
broken up into two structures in order for to it to be analysed.  
 
 
 
 
 
 
 
 
 
 
 
To analyse the beam it is assumed that there is a hinge at the pin support, a 
1kNm moment is then placed at either side of this. 
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Moment-Area Method 
 

The moment area method, which was developed by Mohr, is a powerful tool 

for finding the deflection of structures primarily subjected to bending. Its ease 

of finding deflections of determinate structures makes it ideal for solving 

indeterminate structures by using a method of compatibility of displacement. 

The method used is as outlined in Caprani (2007). 
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Ref: Caprani (2007) 

Theory: 

 

Consider a length of beam AB in its undeformed and deformed shape as 

shown above. 

Note: 

The original length of the beam  = AB 

The deformed length of the beam when it is loaded   = A`B` 

The angle at the centre of A`OB` is θ and this is the change in curvature from 

A` to B` 

θa 

θ 

∆ 

d∆ 

dθ 

θb 

P 
Q 

ds 
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Dθ is the change in curvature from P to Q 

M is the average bending moment over the portion dx between P and Q 

The distance ∆ is called the vertical intercept. It is the distance from B` to the 

tangent of A`. It is a vertical line measured perpendicular to the undeformed 

neutral axis. 

 

Mohr’s first Theorem: 

 

Note: Angles are measured in radians 

ds = R.dθ 

Therefore:  R = ds/dθ 

 

Euler Bernoulli theory of bending gives: 1/R = M/EI 

 

Therefore: dθ = (M/EI).ds 

 

But:  ds ≈ dx 

for small deflection 

 

Therefore:dθ =        (M/EI).dx 

 

Therefore: The total change in rotation between A and B is 

 

 =  

Where M/EI is the curvature 
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The diagram of this term as it changes along a beam is the curvature diagram 

(M/EI diagram) 

Therefore:  dθ = θB – θA =  

 

In words this is: [Change in slope]AB = [Area of M/EI diagram]AB  

 

Mohr’s first theorem states: The change in slope over any length of a member 

subjected to bending is equal to the area of the curvature diagram over that 

length. 

 

Mohr’s second Theorem: 

 

The diagram shows that   d∆ = x.dθ 

 

But:  dθ = dx 

Thus: d∆ = .x.dx 

So for AB   =  

 

Therefore:  ∆BA = [  dx] x 

= First moment of M/EI diagram about B 

In words this is:  

[Vertical Intercept]BA = [Area of M/EI diagram]BA x  
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   [Distance from support B to centroid of (M/EI)BA diagram] 

  

Mohr’s second Theorem states that for an originally straight beam, subject to 

bending moment, the vertical intercept between one terminal and the tangent 

to the curve of another terminal is the first moment of the curvature diagram 

about the terminal where the intercept is measured. 

 

Note: The vertical intercept is not the deflection. 

 

Calculations: 

 

The following is the BMD for the beam with the UDL to the right of the Max 

moment. 

 

I will now use this and Mohr’s second theorem to calculate the deflection 

under the 17wl2/96 bending moment 

 

 

Note: ∆ = δ as θc is zero 
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EI ∆max = [(1/3*5l/27*5wl2/48)*(163l/432 + (3/4*5l/27))] – 

[(2/3*163l/432*17wl2/96)*(3/8*163l/432)] 

 

Therefore:  

∆max =                   
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Theory of Macaulay’s Method 
 
 
The Macaulay’s Method is a means of finding the equation that describes the 
deflected shape of a structure. This is done by combining the Macaulay’s 
theory of obtaining a single equation for the bending moment with the Euler-
Bernoulli theory in which the bending moment equation is integrated to find 
the deflection equation. It is outlined below in accordance with Caprani 
(2007). 
  
 
Background information 
 
On investigating the Euler-Bernoulli theory of bending at a certain location 
along a beam we found that  

EI
M

R
I =

 
 
Where R is the radius of curvature of a point and mathematically we know that  

2

2

dx
yd

R
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Where y is the deflection at a point and x is the distance of this point along the 
beam. Thus combining this knowledge we can say that 
 

EI
M

dx
yd
2

2

=
 

 
And this is the fundamental equation in finding deflection. 
 
Another key ingredient in the Macaulay’s method is the Discontinuity 
Function. It gives the equation the ability to switch on and off functions when 
they are needed so that the equation produces the correct answer throughout 
the beam. This is achieved by the special mathematical characteristics of the 
discontinuity function where its value is assumed to be zero when the result 
within the brackets is a negative value.  
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Calculations 
 
Reactions obtained from stiffness matrix 
 

 

Ma = 48
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 Mc = 48
WL5 2
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Cut section of Beam for Macaulay Calculation 
 

 
Find Bending Moment at x using Macaulay’s. 
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Integrate this to find rotation. 
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Integrate again to find Deflection. 
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The constants of integration can be solved from our boundary conditions.  
 

0
dx
dy =

       at           0x =                                                                 
 

0C1=∴  
 
 And  y = 0 at x = 0 
 

0CC 12 ==∴  
 
Thus are equations for rotation and deflection are; 
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To find deflection at max moment sub in distance from left support to max 

moment which is 16
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Virtual Work 
 
Background 
 
The following was carried using Caprani (2008) and Davies (1982) 
 
The law of the conservation of energy stated “energy can neither be created 
nor destroyed only changed from one from to another” for structures this can 
be stated that “a structural system that is isolated such that neither gives nor 
receives energy the total energy of this system remains constant”. 
As stated above the structure in question must be isolated, this means all 
sources of restraint and loading must be identified and accounted for. For 
instance to neglect a structures self weight could be hazardous as the 
structure would receive a gravitational energy and not accounting for this 
could induce a structural collapse.   
The virtual work method of structural analysis is based around the idea that 
Strain energy is equivalent to the amount of deformation causes by an 
external load, which means strain energy is the amount of energy stored in a 
member due to the deformation created by an external load.  Therefore a 
small increase in the force applied to structure results in a small deflection. 
The work done can be seen to be (force X displacement) the average force 
during the structures course of deflection times, the displacement causes 
during this time. 
Virtual work is based upon the principle of minimum total potential energy, it 
can be seen that any small variation about the equilibrium must do no work. 
Thus the Principle of Virtual Work States that 
“A structure is in equilibrium if and only if, the virtual work of all the forces 
acting on the structure is zero”. 
The term virtual in when referring to “Virtual Work” means having the effect of 
but the effect of but not the actual form of what is specified, which means that 
ways impose virtual work can be imposed without having to worry about how 
this would be achieved in the physical world, this makes it a very power full 
tool for the engineers arsenal. 
 
Calculating Max Deflection: 
To calculate the max deflection of the beam a Compatibility and Equilibrium 
set must be established. 

• A Compatibility set: is formed from the actual deflections an 
rotations that occur along the length of the beam. 
 

• An Equilibrium Set: is based on a unit virtual force is applied, 
which is in equilibrium with the internal virtual moment it causes. 

  
Compatibility set. 
 
To calculate the rotations along the length of the beam, the external deflection 
at distance X must be found. 
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From the stiffness analysis it can be calculated. 

∑ of the moments about x = 0 

=>    

=>   

Equilibrium Set: 
 
As the value for δF = 1 was chosen, only 
the virtual moments are left to be calculated.  

 
∑ of the moments about A = 0 

=>    

=>   
 
∑ fx = 0 
=>    

=>    
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=>    
 
∑ of the moments about x = 0 section (a-x) 

=>    

=>   
 
∑ of the moments about x = 0 section (b-x) 

=>    

=>   
 

Virtual Work Equation: 
 

 

 
Substitute in the values for the real rotations and the virtual moments. 
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Conclusion  
 
 
Carrying out this project has led to a good collective understanding of the 
stiffness analysis approach for continuous beams. This is very helpful as this 
topic was covered for the project prior to our starting it in class, therefore 
giving us a good basis for understanding the more complex structures which 
could be encountered in the course.  
The results from the stiffness analysis were used to obtain the deflection, at 
the point of maximum moment, when utilizing Macaulay’s, virtual work and the 
moment-area method. 
 
 
The deflection obtained from the moment-area method came out as the 
following: 
 

EI

WLx
y

431098.2 −−=  

Due to the assumptions made, in regard to the areas of the bending moment 
diagram, the above equation may not be correct. 
 
 
The deflection obtained from the Macaulay method came out as the following: 
 

EI

WLx
y

44101.57 −−=  

 
 
There are discrepancies in this answer due to generalization of certain terms. 
For example, the removal of the constants of integration due to the boundary 
conditions. Also, axial load was not taken into account. 
 
 
The deflection obtained from the virtual work method came out as the 
following: 
 

 
 

 
The choice of compatibility set may have adversely affected this answer. Also, 
a hinge was assumed at the middle support in this compatibility set. 
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