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1. Introduction

1.1 Background

The matrix stiffness method is the basis of almost all commercial structural analysis
programs. It is a specific case of the more general finite element method, and was in
part responsible for the development of the finite element method. An understanding
of the underlying theory, limitations and means of application of the method is
therefore essential so that the user of analysis software is not just operating a ‘black
box’. Such users must be able to understand any errors in the modelling of structures
which usually come as obtuse warnings such as ‘zero pivot’ or ‘determinant zero:
structure unstable: aborting’. Understanding the basics presented herein should

hopefully lead to more fruitful use of the available software.

Note: LinPro is very useful as a study aid for this topic: right click on a member and

select “Stiffness Matrix” to see the stiffness matrix for any member.

File Wiew Structure Load/Mass Analysis Draw  Help
DEE & THh—4 (61 [V[[B]» I MTHAR |04 v
gl @ @ a =S| "e » MODET E o = Tirne: | [0

I: ul |v1 i |u2 |v2

ZSDUUDDUUE 0.00 . -25000000.01 0.00

0. g37.50 3750.00 0.00 -937.50 3750.00
0.00 3750.00 2000000 | 0.00 -3750.00  10000.00

-25000000.0 0,00 ulila] 28000000.00 0.00 noo
0.00 -937.50 375000 000 937.50 -3750.00
0.00 375000 1000000 |0.00 -3750.00 2000000

®=10.00 Y=35.00 kMN-m
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1.2 Basic Concepts

Node
The more general name for a connection between adjacent members is termed a node.
For trusses and frames the terms joint and node are interchangeable. For more

complex structures (e.g. plates), they are not.

Element

For trusses and frames element means the same as member. For more complex

structures this is not the case.

Degree of Freedom

The number of possible directions that displacements or forces at a node can exist in

is termed a degree of freedom (dof). Some examples are:

e Plane truss: has 2 degrees of freedom at each node: translation/forces in the X and y
directions.

e Beams: have 2 degrees of freedom per node: vertical displacement/forces and
rotation/moment.

e Plane Frame: has 3 degrees of freedom at each node: the translations/forces similar
to a plane truss and in addition, the rotation or moment at the joint.

e Space Truss: a truss in three dimensions has 3 degrees of freedom: translation or
forces along each axis in space.

e Space Frame: has 6 degrees of freedom at each node: translation/forces along each

axis, and rotation/moments about each axis.
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Thus a plane truss with 10 joints has 20 degrees of freedom. A plane frame with two
members will have three joints (one common to both members) and thus 9 degrees of

freedom in total.

Local and Global

Forces, displacements and stiffness matrices are often derived and defined for an axis
system local to the member. However there will exist an overall, or global, axis
system for the structure as a whole. We must therefore transform forces,

displacements etc from the local coordinate system into the global coordinate system.
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1.3 Matlab Truss Analysis Program

Description

To support the ideas developed here we will introduce some Matlab scripts at each
point to demonstrate how the theory described can be implemented for computer
calculation. This collection of scripts will build into a program that can analyse pin-
jointed trusses. The scripts will only demonstrate the calculations process, and do not
have any graphical user interface facilities. This keeps the calculation process
unencumbered by extra code. (In fact probably 90+% of code in commercial
programs is for the graphical user interface and not for the actual calculations
process.) Of course, this 1s not to say that graphical displays of results are
unimportant; gross mistakes in data entry can sometimes only be found with careful

examination of the graphical display of the input data.

The scripts that are developed in these notes are written to explain the underlying
concepts, and not to illustrate best programming practice. The code could actually be
a lot more efficient computationally, but this would be at cost to the clarity of
calculation. In fact, a full finite element analysis program can be implemented in

under 50 lines (Alberty et al, 1999)!

It is necessary to use a scripting language like Matlab, rather than a spreadsheet
program (like MS Excel) since the number of members and member connectivity can

change from structure to structure.

The program will be able to analyse plane pin-jointed-trusses subject to nodal loads
only. It will not deal with member prestress, support stiffness or lack of fits: it is quite

rudimentary on purpose.
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Use

To use the program, download it from the course website (www.colincaprani.com).

Extract the files to a folder and change the current Matlab directory to that folder.
After preparing the data (as will be explained later), execute the following statement

at the command line:

>> [D F R] = AnalyzeTruss(nData,eData)

This assumes that the nodal data is stored in the matrix nData, and the element data
matrix is stored in eData — these names are arbitrary. Entering the required data into

Matlab will also be explained later.
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2. Basic Approach

2.1 Individual Element

We consider here the most basic form of stiffness analysis. We represent a structural
member by a spring which has a node (or connection) at each end. We also consider
that it can only move in the X-direction. Thus it only has 1 DOF per node. At each of

its nodes, it can have a force and a displacement (again both in the X-direction):

le 2

(ﬁ:ii :, ,(’ ____g_’cz;‘fa)
- x

Notice that we have drawn the force and displacement vector arrows in the positive x-

direction. Matrix analysis requires us to be very strict in our sign conventions.

Using the basic relationship that force is equal to stiffness times displacement, we can

determine the force at node 1 as:

F, =k (net displacement at 1)

1

Thus:
F =k(u —u,)=ku —ku, (2.1)
Similarly for node 2:

F, =k(u, —u,)=—ku, +ku, (2.2)

2
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We can write equations (2.1) and (2.2) in matrix form to get the element stiffness

matrix for a 1-DOF axial element:

Fl I o

Ands using matrix notation, we write:
{F} = [k]{u] 24)

Here:

° {Fe} is the element force vector;
° [k] is the element stiffness matrix;

o {ue} is the element displacement vector.

It should be clear that the element stiffness matrix is of crucial importance — it links
nodal forces to nodal displacements; it encapsulates how the element behaves under

load.

The derivation of the element stiffness matrix for different types of elements is
probably the most awkward part of the matrix stiffness method. However, this does
not pose as a major disadvantage since we only have a few types of elements to

derive, and once derived they are readily available for use in any problem.
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2.2 Assemblies of Elements

Real structures are made up of assemblies of elements, thus we must determine how
to connect the stiffness matrices of individual elements to form an overall (or global)

stiffness matrix for the structure.

Consider the following simple structure:

(fi:“lb “iﬁﬁ(é’,@ 222;, (’FS‘,"CQ

1 le, 7 ley 3

Note that the individual elements have different stiffnesses, k, and k,. Thus we can

write the force displacement relationships for both elements as:

Fl _ kl _kl U, 75
Fz - | kl u, ( ' )

uz}
(2.6)
u

F k. -k 0]|u,
Fr=l-k k 0fu, (2.7)
F, 0 0 O0f|u
F 0 0 0 ||y
Fr=/0 k, -k, |qu, (2.8)
F, 0 -k, k, ||u,
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We can add equations (2.7) and (2.8) to determine the total of both the forces and

displacements at each node in the structure:

F K, K, 0 |[u,
Fr=|-k k+k =k, |u, (2.9)
F, 0 -k, K, |lu,

As can be seen from this equation, by adding, we have the total stiffness at each node,
with contributions as appropriate by each member. In particular node 2, where the

members meet, has total stiffness k, +k,. We can re-write this equation as:

(F) =[K]{u] (2.10)

In which:

e {F} is the force vector for the structure;
o [K] is the global stiffness matrix for the structure;

e {u} is the displacement vector for the structure.
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2.3 Examplel

Problem

The following axially-loaded structure has loads applied as shown:

®

NN

lookA)

}‘ p2¥

/1[’ ®-) /\‘/a-l‘n}/

The individual member properties are:

Member Length (m) Area (mm®) Material, E (kN/mm?)
1 0.28 400 70
2 0.1 200 100
3 0.1 70 200

Find the displacements of the connections and the forces in each member.

13
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Solution

Our first step is to model the structure with elements and nodes, as shown:

loobA)

NN
Q

Jﬁ 228 A[, -] J o/ [
C,C W, k, Cfe—lub @/MD (‘hf,u‘{)
— — —

2. 3 L
= ke, les ley
Calculate the spring stiffnesses for each member:

=100x10°kN/m

(EA) 70-400
L

(EAJ 100- 200—200><1031<N/m

k :( Aj 200-70 _ 1 40x10° kN/m
L), 0.l

Next we calculate the individual element stiffness matrices:
F X 100 —100]|
=10
F, —-100 100

Rl _ ] 200 -200]
F[ [-200 200

2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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=

3
I:4

|

10°
—-140

140

~1407 (u,
140 ||u,

We expand and add the element stiffness matrices to get:

LILELI A B B

100 —-100 0 0 |[u,
_10° -100 (100+200) —200 0 u,
- 0 -200 (200+140) —140]|u,
0 0 —-140 140 ||u,
Notice how each member contributes to the global stiffness matrix:
Node 1 | Node 2 | Node 3 | Node 4
Node 1 < \ 0 0
w2
\ 4
Node 2 (/) < {2’ 0
W P
\
Node 3 0 (%) < %
W o
s
Node 4 0 0

@0

(2.16)

' (2.17)

Notice also that where the member stiffness matrices overlap in the global stiffness

matrix that the components (or entries) are added. Also notice that zeros are entered

where there is no connection between nodes, e.g. node 1 to node 3.

15
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We cannot yet solve equation (2.17) as we have not introduced the restraints of the
structure: the supports at nodes 1 and 4. We must modify equation (2.17) in such a
way that we will obtain the known results for the displacements at nodes 1 and 4.

Thus:

(0 1 0 0 07(u,
F| [0 (100+200) 200 0|y,
=10 (2.18)
F, 0 200  (200+140) 0 ||y,
0 0 0 0 1]y,

What we have done here is to ‘restrict’ the matrix: we have introduced a 1 on the
diagonal of the node number, and set all other entries on the corresponding row and
column to zero. We have entered the known displacement as the corresponding entry

in force vector (zero). Thus when we now solve we will obtain u, =u, =0.
For the remaining two equations, we have:
F, | 300 200 |fu,
=10 (2.19)
F, —200 340 ||u,
And so:

u, 1 1 340 200 ||-50 113 R
— . = x10” m
u, 10° (300)(340) — (—200)(—200) 200 3001|100 62 (20

0.048
= mm
0.322

To find the forces in the bars, we can now use the member stiffness matrices, since

(2.20)

we know the end displacements:
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Member 1

F] . .[100 -1007( © L [-48
=10 x107 = (2.21)
F ~100 100 ||0.048 4.8

Thus Member 1 has a tension of 4.8 kN, since the directions of the member forces are

interpreted by our sign convention:

u.g @
< S

Also note that it is in equilibrium (as we might expect).

Member 2
F, ;| 200 —200|[0.048 L |—54.8
=10 x107 = (2.22)
F, -200 200 |10.322 54.8
Member 2 thus has tension of 54.8 kN.

Member 3

: [ 140 -1407(0322) . [ 45.08
=10 <107 = (2.23)
F, ~140 140 || o© —45.08

Thus Member 3 has a compression of 45.08 kN applied to it.
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Problem

Find the displacements of the connections and the forces in each member for the

following structure:

R

Q
N
\

Y v W L 5 )
O a 2 0 nl
7
£ = EQWMMZ
! L 7 ¥ = 180 neme™
Lo /L
X g g
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2.4 General Methodology

Steps

The general steps in Matrix Stiffness Method are:

1. Calculate the member stiffness matrices

2. Assemble the global stiffness matrix

3. Restrict the global stiffness matrix and force vector

4. Solve for the unknown displacements

5. Determine member forces from the known displacements and member stiffness
matrices

6. Determine the reactions knowing member end forces.

19 Dr. C. Caprani
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Matlab Program - Implementation

These steps are implemented in the Matlab Program as follows:

function [D F R] = AnalyzeTruss(nData,eData)
% This function analyzes the truss defined by nData and eData:
% nData = [X, y, xLoad, ylLoad, xRestraint, yRestraint]

% e

kg
fv
[kg
D =
F
R

Data = [iNode, jNode, E, A];

= AssembleTrussK(nData, eData); %
= AssembleForceVector(nData); %
r fv] = Restrict(kg, fv, nData); %
fv/kgr; %
ElementForces(nData,eData,D); %
D*kg; %

Assemble global stiffness matrix
And the force vector

Impose restraints

Solve for displacements

Get the element forces

Get the reactions

The output from the function AnalyzeTruss is:

e D: vector of nodal deflections;

e [: vector of element forces;

e R: vector of nodal forces (indicating the reactions and applied loads).

The input data required (nData and eData) will be explained later.

20
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2.5 Member contribution to global stiffness matrix

Consider a member, ij, which links node i to node j. Its member stiffness matrix will
be:

Node i | Node j

Node i kllij k12ij

Node J k21ij k22ij

Its entries must then contribute to the corresponding entries in the global stiffness

matrix:

Node i Node j
Node i cese kllij cos k12ij
Nodej coe k21ij cos k22ij

If we now consider another member, jl, which links node j to node |. Its member

stiffness matrix will be:

21 Dr. C. Caprani
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Node j | Node |
Nodej k1 1j| k12j|
Node | k21j| k22j|
And now the global stiffness matrix becomes:
Node i Node j Node |
Node i k1 lij k12ij
. ) k22; + .
Node | k215 ki1, k12;
Node | k21|j k22j|

In the above, the identifiers k11 etc are sub-matrices of dimension:

ndof x ndof

where ndof refers to the number of degrees of freedom that each node has.

22
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Matlab Program — Element Contribution

Considering trusses, we have 2 degrees of freedom (DOFs) per node, the X direction
and the y direction. Thus, for a truss with nn number of nodes, there are 2nn DOFs in

total. The x-DOF for any node i is thus located at 2i-1 and the y-DOF at 2i.

Consider a truss member connecting nodes i and j. To add the 4x4 truss element
stiffness matrix into the truss global stiffness matrix, we see that each row adds into
the following matrix columns:

2i-1  2i 2j-1 2]
The rows in the global stiffness matrix corresponding to the rows of the element
stiffness matrix are:
1. Row 1: Adds to row 2i-1 of the global stiffness matrix;
2. Row 2: Adds to row 2i;
3. Row 3: adds to row 2j-1;
4. Row 4: adds to row 2j.

Note of course that the column and row entries occur in the same order.

These rules are implemented for our Truss Analysis Program as follows:

function kg = AddElement(iEle,eData,ke,bkg)
% This function adds member iEle stiffness matrix ke to the global
% stiffness matrix Kkg.

% What nodes does the element connect to?
iNode = eData(iEle,1);
JNode = eData(iEle,2);

% The DOFs in kg to enter the properties into
DOFs = [2*iNode-1 2*iNode 2*jNode-1 2*jNode];

% For each row of ke
for 1 = 1:4
% Add the row to the correct entries in kg
kg(DOFs(i1),DOFs) = kg(DOFs(i),DOFs) + ke(i,:);
end
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Matlab Program — Global Stiffness Matrix Assembly

The function that assembles the truss global stiffness matrix for the truss is as

follows:

function kg = AssembleTrussK(nData, eData)
% This function assembles the global stiffness matrix for a truss from the
% joint and member data matrices

% How many nodes and elements are there?
[ne ~] size(eData);
[nn ~] size(nData);

% Set up a blank global stiffness matrix
kg = zeros(2*nn,2*nn);

% For each element

for 1 = 1:ne
E = eData(i,3); % Get its E and A
A = eData(i,4);
[L ¢ s] = TrussElementGeom(i,nData,eData); % Geometric Properties
ke = TrussElementK(E,A,L,C,S); % Stiffness matrix
kg = AddElement(i,eData,ke,kq); % Enter it into kg
end

Note that we have not yet covered the calculation of the truss element stiffness
matrix. However, the point here is to see that each element stiffness matrix is

calculated and then added to the global stiffness matrix.
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Matlab Program — Force Vector

Examine again the overall equation (2.10) to be solved:

(F} =[K]{uj

We now have the global stiffness matrix, we aim to calculate the deflections thus we
need to have a force vector representing the applied nodal loads. Again remember

that each node as two DOFs (X- and y-loads). The code for the force vector is thus:

function F = AssembleForceVector(nData)
% This function assembles the force vector

% How may nodes are there?
[nn ~] = size(nData);

% Set up a blank force vector
f = zeros(1,2*nn);

% For each node
for 1 = 1:nn
f(2*1 - 1) = nData(i, 3); % x-load into x-DOF
f(2*1) = nData(i, 4); % y-load into y-DOF
end
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Structural Analysis IV

2.6 Interpretation of Stiffness Matrix

It 1s useful to understand what each term in a stiffness matrix represents. If we

consider a simple example structure:

(f??“b (é/@ (’Fﬂv 43)
— o~ (l——ltf}—oc "+
1 le, yA leo 3

We saw that the global stiffness matrix for this is:

If we imagine that all nodes are fixed against displacement except for node 2, then we

have the following:

26 Dr. C. Caprani
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From our general equation:

Fl Kn K12 K13 0 K12
Fr=|K, K, K,Rl;=1K, (2.24)
F3 K31 K32 K33 0 K32
Thus:
Fl K12 _kl
F,e=<K, =1k +Kk, (2.25)
F3 K32 _kz

These forces are illustrated in the above diagram, along with a free-body diagram of

node 2.

Thus we see that each column in a stiffness matrix represents the forces required to

maintain equilibrium when the column’s DOF has been given a unit displacement.

This provides a very useful way to derive member stiffness matrices.
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2.7 Restricting a Matrix

In Example 1 we solved the structure by applying the known supports into the global
stiffness matrix. We did this because otherwise the system is unsolvable; technically
the determinant of the stiffness matrix is zero. This mathematically represents the fact

that until we apply boundary conditions, the structure is floating in space.

To impose known displacements (i.e. supports) on the structure equations we modify
the global stiffness matrix and the force vector so that we get back the zero

displacement result we know.

Considering our two-element example again, if node 1 is supported, U, =0. Consider

the system equation:

I:l Kll K12 K13 ul
Fr=1K, K, K,[]u, (2.26)
F3 K31 K32 K33 u3
Therefore to obtain U, =0 from this, we change K and F as follows
0 1 0 0 ([y
Fr=10 K, K, |qu, (2.27)
F3 0 K32 K33 u3

Now when we solve for u, we will get the answer we want: U =0. In fact, since we

now do not need this first equation, we could just consider the remaining equations:

{Fz} {Kzz KHU}
= (2.28)
F3 K32 K33 u3
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And these are perfectly solvable.

Thus to summarize:

To impose a support condition at degree of freedom i:
1. Make the force vector element of DOF i zero;
2. Make the i column and row entries of the stiffness matrix all zero;

3. Make the diagonal entry (i,i) of the stiffness matrix 1.
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Matlab Program — Imposing Restraints
To implement these rules for our Truss Analysis Program, we will first create of
vector which tells us whether or not a DOF is restrained. This vector will have a zero

if the DOF is not restrained, and a 1 if it 1s.

Once we have this vector of restraints, we can go through each DOF and modify the
force vector and global stiffness matrix as described before. The implementation of

this is as follows:

function [kg f] = Restrict(kg, f, nData)
% This function imposes the restraints on the global stiffness matrix and
% the force vector

% How may nodes are there?
[hn ~] = size(nData);

% Store each restrained DOF in a vector
RestrainedDOFs = zeros(2*nn,1);

% For each node, store if there is a restraint
for i = 1:nn
% Xx-direction
if nData(i,5) ~= 0 % if there is a non-zero entry (i.e. supported)
RestrainedDOFs(2*i-1) = 1;
end
% y-direction
if nData(i,6) ~= 0 % if there is a support
RestrainedDOFs(2*1) = 1;
end
end

% for each DOF
for i = 1:2*nn

if RestrainedDOFs(i) == % if It is restrained
(1) = 0; % Ensure force zero at this DOF
kg(i,:z) = 0; % make entire row zero
kg(:,1) = 0; % make entire column zero
kg(i,i) = 1; % put 1 on the diagonal

end

end
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3. Plane Trusses

3.1 Introduction

Trusses are assemblies of members whose actions can be linked directly to that of the

simple spring studied already:
k=— 3.1

There is one main difference, however: truss members may be oriented at any angle

in the Xy coordinate system (Cartesian) plane:

4
£) A \ Lﬂ
: A
{ L.
N

lé Cx >

Thus we must account for the coordinate transformations from the local member axis

system to the global axis system.
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Matlab Program — Data Preparation

In the following sections we will put the final pieces of code together for our Truss
Analysis Program. At this point we must identify what information is required as

input to the program, and in what format it will be delivered.

The node data is stored in a matrix nData. Each node of the truss is represented by a
row of data. In the row, we put the following information in consecutive order in
columns:
1. X-coordinate;

. y-coordinate;

. X-load: 0 or the value of load;

2

3

4. y-load: 0 or the value of load;

5. X-restraint: O if unrestrained, any other number if restrained;
6

. y-restraint: O if unrestrained, any other number if restrained.

The element data is stored in a matrix called eData. Each element has a row of data
and for each element the information stored in the columns in order is:

1. i-Node number: the node number at the start of the element;

2. j-Node number: the other node the element connects to;

3. E: the Modulus of FElasticity of the element material;

4. A: the element area;

We will prepare input data matrices in the above formats for some of the examples
that follow so that the concepts are clear. In doing so we keep the units consistent:

e Dimensions are in m;

e Forces in kN

e Elastic modulus is in KN/mm?;

e Areais mm-.
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Matlab Program — Data Entry

To enter the required data, one way is:

1. Create a new variable in the workspace (click on New Variable);

Workspace = [ A X
a5 gl = & & | stack: [P Select data to plot -
Yok Mn Maxt

2. Name it eData for example;

Wurkspace
E {E Eﬁ E&; Stack: @Nn walid plots for: unnamed -
Marme - Yalue i Ma
elraka n 1] ] 1

3. Double click on the new variable to open the Matlab Variable Editor;

i
LN EEE RSN RS [P Mo valid plots For: eData(l,1) HOHA ||:|| [
E eData <1x1 double o

2 3 4 5 G T g 9 10 11 12

.3

== T PR R R
—_

4. Enter the necessary input data (can paste in from MS Excel, or type in);

5. Repeat for the nodal data.
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3.2 Truss Element Stiffness Matrix

For many element types it is very difficult to express the element stiffness matrix in
global coordinates. However, this is not so for truss elements. Firstly we note that the

local axis system element stiffness matrix is given by equation (2.3):

[k]= L (3.2)
-k k] '
Next, introducing equation (3.1), we have:

[k]:E{ ! _1} (3.3)

However, this equation was written for a 1-dimensional element. Expanding this to a

two-dimensional axis system is straightforward since there are no y-axis values:

0 -1 0|« X

[k]:ﬁ 0 0 0 0« (3.4)
Li-1 0 1 0«<X,
0 0 0 0«

Next, using the general element stiffness transformation equation (See the Appendix):
T
[k]=[T] [k][T] (3-5)
And noting the transformation matrix for a plane truss element from the Appendix:
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[ cosa  sina 0 0
T. 0 —sina  cosa 0 0
T= = . (3.6)
0 T 0 0 cosa sina
0 0 —sina  cos« |
We have:
[ cosa  sina 0 o Tt 0 -1 0]
[k] EA| —sina cosa 0 0 0O 0 0 O
L 0 0 cosa sina -1 0 0
0 0 —sinax cosa 0O 0 0 O
- B - - - (3.7)
cosa SsSina 0 0
—sina cosa 0 0
0 0 cosa sina
0 0 —sina  cos« |
Carrying out the multiplication gives:
| cos’a cosasina | —cos’a@  —cosasina |
|
EA| cosasina sinfa ! —cosasina —sin’ «
k=——f o0 RS e R
L —cos” o —cosasing | cos’ & cosasina
| —cosasina  -sin‘a | cosasina sina |
If we examine the nodal sub-matrices and write C=cosa, S=sina :
(¢ cs | ¢ —cs]
|
EA| ¢cs s° 1—cs -§°
[ R 39
L|-c —CS: C CS
—cs -s’ | ¢cs  § |
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Labelling the nodal sub-matrices as:

k_k11 K12 310
[]_k21 k22 (3-10)

Then we see that the sub-matrices are of dimension 2 % 2 (No. DOF x No. DOF) and

arc:

c’ ¢S
kllzg{ 2} (3.11)
Llcs s
And also note:
k11=k22 =-k12 =-k21 (3.12)

Therefore, we need only evaluate a single nodal sub-matrix (k11) in order to find the

total element stiffness matrix in global coordinates.
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Matlab Program — Element Stiffness Matrix

Calculating the element stiffness matrix for our Truss Analysis Program is easy. The
only complexity is extracting the relevant data from the input node and element data
matrices. Rather than try determine the angle that the truss member is at (remember
we only have the nodal coordinates), we can calculate cosa and sina directly (e.g.
adjacent/hypotenuse). Further, the element length can be found using Pythagoras,

given the nodal coordinates. These element properties are found in the script below:

function [L ¢ s] = TrussElementGeom(iEle,nData,eData);
% This function returns the element length

% What nodes does the element connect to?
iNode = eData(iEle,1);
JNode = eData(iEle,2);

% What are the coordinates of these nodes?

iNodeX = nData(iNode,1);
iNodeY = nData(iNode,2);
JNodeX = nData(jNode,1);
JNodeY = nData(jNode,?2);

% Use Pythagoras to work out the member length
L = sgrt((JNodeX - iNodexX)” 2 + (JNodeY - iNodeY)"™ 2);

% Cos is adjacent over hyp, sin is opp over hyp
c = (JNodeX - iNodeX)/L;
s = (JNodeY - iNodeY)/L;

The E and A values for each element are directly found from the input data element

matrix as follows:

ebata(i,3); % Get its E and A
eData(i,4);

Thus, with all the relevant data assembled, we can calculate the truss element
stiffness matrix. In the following Matlab function, note that we make use of the fact

that each nodal sub-matrix can be determined from the nodal sub-matrix k11:
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function k = TrussElementK(E,A,L,cC,S)
% This function returns the stiffness matrix for a truss element
ki1l = [ c™2 c*s;

c*s s™2];

k = (E*A/L) * [ k11 -k11;
-k11 k11];
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3.3 Element Forces

The forces applied to a member’s ends are got from the element equation:
{F*} =[k]{u’} (3.13)

Expanding this in terms of nodal equations we have:

F| [kl k12](3, 314
F| |k21 Kk22]|3, 3.14)

Thus we know:

F =k21-3, +k22-5, (3.15)

From which we could determine the member’s axial force. However, for truss
members, we can determine a simple expression to use if we consider the change in

length in terms of the member end displacements:

AL =5, 6, (3.16)
AL, =6, -5, (3.17)

And using the coordinate transforms idea:

AL =AL cosa + AL sina (3.18)

Also we know that the member force is related to the member elongation by:
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§jy o é‘iy

F= EA. AL (3.19)
L
Thus we have:
F :%-[ALX cosa +AL sinc | (3.20)
And introducing equations (3.16) and (3.17) gives:
0. —0.
F :E_I:A‘.[cosa sina]{ d 'x} (3.21)

A positive result from this means tension and negative compression.
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Matlab Program — Element Force
Once the element nodal deflections are known, the element forces are found as
described above. Most of the programming effort is dedicated to extracting the nodal

deflections that are relevant for the particular member under consideration:

function F = TrussElementForce(nData, eData, d, iEle)
% This function returns the element force for iEle given the global
% displacement vector, d, and the node and element data matrices.

% What nodes does the element connect to?
iNode = eData(iEle,1);

JNode = eData(iEle,2);

% Get the element properties

E = eData(iEle,3); % Get its E and A

A = eData(iEle,4);

[L ¢ s] = TrussElementGeom(iEle,nData,eData); % Geometric Properties

dix = d(2*iNode-1); % x-displacement at node i
diy = d(2*iNode); % y-displacement at node i
djx = d(2*jNode-1); % x-displacement at node j
djy = d(2*jNode); % y-displacement at node j

F = (E*A/L) * (c*(djx-dix) + s*(djy-diy));

Note also that the way the program is written assumes that tension is positive and
compression is negative. We also want to return all of the element forces, so we use

the function just described to calculate all the truss elements’ forces:

function F = ElementForces(nData,eData,d)
% This function returns a vector of the element forces

% How many elements are there?
[ne ~] = size(eData);

% Set up a blank element force vector
F = zeros(ne,1l);

% For each element
for 1 = 1:ne

% Get its force and enter into vector

F(i) = TrussElementForce(nData, eData, d, i);
end
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3.4 Example 2: Basic Truss
Problem

Analyse the following truss using the stiffness matrix method.

lo

Note that:
e E =200 kN/mm?*;

e The reference areais A=100mm®.
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Solution

STEP 1: Determine the member stiffness matrices:

Member 12

The angle this member makes to the global axis system and the relevant values are:

Czcosa:cos45°:L :czzl
V2 2
1 : ° 1 2 1 1
S=sina=sin45=—f =S =— =CS=—
J2 2 2
Therefore:
K11 _(E) ¢’ cs| 200-100/+2[0.5 0.5
P lL Jyles 8 102 |05 0.5
Thus:

11 :10{0.5 0.5}

3.22
0.5 0.5 (3:22)

Notice that the matrix is symmetrical as it should be.
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Member 23

The angle this member makes to the global axis system and the relevant values are:

b X
j=3
.1 , 1
c=cosa=cos315 =—==C =—
V2 2
: . . 1 , 1 1
S=sina =sin315 =—— =¢=— =CS5=——
V2 2 2
Therefore:
K11 _(Ej ¢’ cs| 200-100/v2[ 0.5 -0.5
» L L ),les & 1042  |-0.5 0.5
Thus:

J05 05
K11, =107

Again the matrix is symmetrical.

(3.23)
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STEP 2: Assemble the global stiffness matrix

For 3 nodes, the unrestricted global stiffness matrix will look as follows:

K, K, K, [« Nodel
K=K, K, K, [« Node2
K, K, K., [« Node3

31 33

Note that each of the sub-matrices is a 2x2 matrix, e.g.:

kllxx k12x <~ NOde 1 X
y
I(11 =
K < Node 1y

21yx k22yy

(3.24)

(3.25)

The member stiffness nodal sub-matrices contribute to the global stiffness nodal sub-

matrices as follows:

Kll K12 K13 k1112 k1212
K = KZI K22 K23 = k2112 k2212 +k1123
K31 K32 K33 0 k2123

k12
k22

(3.26)

23

23

Expanding this out and filling in the relevant entries from equations (3.22) and (3.23)

whilst using equation (3.12) gives:
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05 05!-05 -05! 0 0
05 051-05 —051 0 0
=05 =057 1 0 1-05 05
K=10 | | (3.27)
~05 051 0 1 105 -05
0 0 5—0.5 0.5 i 0.5 -0.5
0 0 |05 -05]-05 05|
STEP 3: Write the solution equation in full
{F} =[K]{3] (3.28)
Thus, keeping the nodal sub-matrices identifiable for clarity:
R, (05 05 !-05 —05! 0 0 (s,
R, 05 051-05 -05! 0 0 |8,
0 =05 =057 1 0 1-05 05 ||5,
=10 | | (3.29)
~100 0.5 -0.51 0 1 105 -05||d,
R,, 0 0 5—0.5 0.5 i 0.5 -0.5||0d,
'R, 0 0 ! 05 -05!-05 05][|5,

In which we have noted:

e R is the reaction at node 1 in the X-direction (and similarly for the others);

e The force at node 2 is 0 in the X-direction and -100 kN (downwards) in the y-

direction.
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STEP 4: Restrict the equation.
Now we impose the boundary conditions on the problem. We know:

¢ 0, =0, =0 since node 1 is pinned,

® 0, =0,,=0 again, since node 3 is pinned.

Thus equation (3.29) becomes:

0 1 0lo olo o],
0 0 110 010 05,
0 1o 0oi1 010 0]|5,
=10 | | (3.30)
~100 0 010 110 0[5,
——— _— 1 =
0 0 oio 051 01|,
0 0 010 0j0 1|5,

Since both DOFs are restricted for nodes 1 and 3, we can thus write the remaining

0 —1031 0] 3.31
-100] |0 1|6, (3-31)

equations for node 2:

STEP 5: Solve the system

The y-direction is thus the only active equation:
-100=10°0,, (3.32)
Thus:

5,,=-0.1m=100 mm (3.33)
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STEP 6: Determine the member forces

For truss member’s we outlined a simple method encompassed in equation (3.21). In
applying this to Member 12 we note:

* 0, =9, =0 since it is a support;

e 0, =0 by solution;

¢ 0,,=-0.1 again by solution.

Thus:
o. —0.
F:E_I:A‘.[cosa sina]{i_éj}
1 1 0-0 100
F=10| —— — :__:_50\/51(N 3.34
T Tilloro— .

And so Member 12 is in compression, as may be expected. For Member 23 we
similarly have:

00
leo{ }: 100

1 1
= _ﬁHO— o~ —50+/2kN (3.35)

And again Member 23 is in compression. Further, since the structure is symmetrical
and is symmetrically loaded, it makes sense that Member’s 12 and 23 have the same

force.
STEP 7: Determine the reactions

To determine the remaining unknown forces we can use the basic equation now that

all displacements are known:
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R, (05 05 !1-05 05! 0 0
R, 05 05!-05 051 0 0
0 | _,p|05 <051 10 1-05 05
e
~100 0.5 051 0 1 105 -05
R, 0 0 i—o.s 0.5 i 0.5 -0.5
R, 0 0 |05 -05!-05 05
Thus we have:
0
R,=[-0.5 -0.5] = +50kN
—0.1
0
R,=[-05 —0.5]{ 0 1}:+50kN

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

Again note that the sign indicates the direction along the global coordinate system.

We can now plot the full solution:

NN
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Matlab Program — First Use
All necessary functions have been explained. The main function is given on page 20.
This also gives the single line of code that finds the reactions. The input data for the

example truss just given is:

Node Data Element Data
X y F, Fy Ry Ry Nodei Nodej E A
0 0 0 0 1 1 1 2 200 70.71
10 10 0 -100 0 0 2 3 200 70.71
20 0 0 0 1 1

Node DOF D R Element F
1 X 0 50 1 -70.71
y 0 50 2 -70.71
2 X 0 0
y -0.100 -100
3 X 0 -50
y 0 50

These results, of course, correspond to those found by hand.

The importance of the graphical display of the results should also be noted: there
could have been clear mistakes made in the preparation of the input data that would
not reveal themselves unless the physical interpretation of the results is appreciate by

drawing the deflected shape, the member forces, and the directions of the reactions.
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3.5 Example 3: Adding Members

Problem

Analyse the truss of Example 2 but with the following member 14 added:

Solution

With the addition of node 4 we now know that the nodal sub-matrices global stiffness
equation will be 4x4 with the fully expanded matrix being 16x16. Rather than
determine every entry in this, let’s restrict it now and only determine the values we
will actually use. Since nodes 1, 3 and 4 are pinned, all their DOFs are fully restricted

out. The restricted equation thus becomes:
{F,} =[K22]{3,} (3.41)

Next we must identify the contributions from each member:
e We already know the contributions of Members 12 and 23 from Example 2.
e The contribution of Member 24 1s to nodes 2 and 4. Since node 4 1s restricted, we

only have the contribution k11,, to K22.
Thus K22 becomes:
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K22 =k22, +kl1,, +kl1,, (3.42)

Next determine k11,,: this member makes an angle of 270° to the global axis system

giving:
c=cosa=c0s270°=0 =c*=0
s=sing =sin270°=-1 =s*=1 =cs=0
Therefore:
c’ cs - 0 0 0 0
a, (2] [¢ ] 200 0]y,
L ).lcs s 10 [0 1 0 1
Thus:

0 0
ki1, =10° (3.43)
0 2

Hence the global restricted stiffness matrix becomes:

Jr 0] Jo o] 1o
K22=10 +10 =10 (3.44)
0 1 0 2 0 3

Writing the restricted equation, we have:

0 —1031 01)2x 3.45
-100] |0 3|6, 5.4)
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From which we find the only equation
-100=10°(35,,)

Thus:

5, =-0.033m=33.3mm/

y —

The member forces are:

F=10'| — L 00 ek
2 V2 []1-0.033-0

Fooro| Lo oL 00 e
s £ 2 ]10-(-0.033)

F,=10°[0 2]{ 0,033 O}:—66.6kN

Thus we have the following solution:

&lwm

53
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(3.48)

(3.49)
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Matlab Program — Input/Output

The input data for this example is:

Node Data Element Data
X y Fy, Fy R, Ry Nodei Nodej E A
0 0 0 0 1 1 1 2 200 70.71
10 10 0 -100 0 0 2 3 200 70.71
20 0 0 0 1 1 2 4 200 100
10 0 0 0 1 1
The results are:
Node DOF D R Element F
1 X 0 16.66 1 -23.57
y 0 16.66 2 -23.57
2 X 0 0 3 66.66
y -0.033 -100
3 X 0 -16.66
y 0 16.66
4 X 0 0
y 0 66.66
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3.6 Example 4: Using Symmetry
Problem

Analyse the truss of Example 3 taking advantage of any symmetry:

Solution

Looking at the structure it is clear that by splitting the structure down the middle

along member 24 that we will have two equal halves:

Soleal

q
> 7 71
Al Al |O

! g

. le
ek

Notice that we have changed the following:
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e The load is halved since it is now equally shared amongst two halves;

e Similarly the area of member 24 is halved.

We now analyse this new truss as usual. However, we can make use of some previous

results. For Member 12:

(3.51)

0.5 0.5
k11, :10{ }

0.5 0.5

And for Member 24

1(..Jo o Jo o
k11, =—{10 =10 (3.52)
2] o0 2 0 1

Since the area is halved from that of Example 3, its stiffnesses are halved.

In restricting we note that the only possible displacement is node 2 in the y-direction.

However, we will keep using the node 2 sub-matrices until the last moment:

Jos5 o0 Jo o] o5 o
K22=10 +10 =10 (3.53)
0 05 0 1 0 1.5

Thus:

0]_,p[05 0][e. s 54
50 |0 15]]|s, 359

And now imposing the boundary condition J, =0:

56 Dr. C. Caprani



Structural Analysis IV

{-50}=10°[1.5){5,, } (3.55)

From which we solve for the displacement:

{5_50}:10 [1.5){5.,] (3.56)

=-0.033m=333mm+

This (of course) is the same result we obtained in Example 3. For the member forces

we have:

11 0-0
F =10’| = — =-23.6kN 3.57
? L/E \/EH—O.oss—o} 357
F,=10'[0 1] 00 L a3k (3.58)
7 0-(-0.033)( 7 '

Member 12 has the same force as per Example 3 as is expected.
It might appear that Member 24 has an erroneous force result. It must be remembered

that this is the force in the half-member (brought about since we are using symmetry).

Therefore the force in the full member is 2x33.3=66.6 kN as per Example 3.
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3.7 Self-Strained Structures

Introduction

A self-strained structure is one where strains are induced by sources other than
externally applied loads. The two main examples are temperature difference and lack
of fit of a member. For example consider the effect if member 13 in the following

structure was too long and had to be ‘squeezed’ into place:

l.[.

It should be intuitively obvious that to ‘squeeze’ the member into place a

compressive force was required to shorten it to the required length:

F!3 63

— = 2T e
v

LreeD LbL
g )
D
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Once the member has been put in place, the source of the ‘squeezing’ is removed.

Since the member wants to spring back to its original length, it pushes on its joints:

N

L‘-

In this way members 12 and 14 will now go into tension whilst member 13 will
remain in compression, but a smaller compression than when it was ‘squeezed’ into

place since joint 1 will deflect to the right some amount.

In a similar way to lack of fit, examined above, if member 13 had been subject to a
temperature increase it would try to elongate. However this elongation is restrained
by the other members inducing them into tension and member 13 into some

compression.
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Lack of Fit
We consider a member with original length of L, that is required to be of length
L..... Thus a change in length of AL must be applied:

Req'd *

L., =L, +AL (3.59)

Req'd

Thus:
e AL is positive: the member is too short and must be lengthened to get into place;

e AL is negative, it is too long and must be shortened to get into place.

Thus we must apply a force to the member that will cause a change in length of AL.

From basic mechanics:

AL = Fl (3.60)
EA
Thus the force required is:
F = EA-AL—L (3.61)

From the above sign convention for AL:
e F is positive when the member must be put into tension to get it in place;

¢ F is negative when the member must be put into compression to get it in place.

Lastly, remember to apply the member force in opposite direction to the member’s

nodes.
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Temperature Change

We consider a member that is subject to a differential (i.e. different to the rest of the
structure) temperature change of AT degrees Celsius. Also we must know the
coefficient of linear thermal expansion, ¢, for the material. This is the change in

length, per unit length, per unit change in temperature:

AL
=|==1/C 3.62
¢ (Lo j/ (362

Thus the thermal strain induced in the member is:
& =aAT (3.63)
And so the change in length is:
AL=al AT (3.64)
Also, since o = E¢, we find the force in the member:
F. =0, A=EA¢g (3.65)

So finally, from equation (3.63), the force required to suppress the temperature

change is:

F. = EAxAT (3.66)

Once again, apply this force in the opposite direction to the member’s nodes.
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3.8 Example 5 — Truss with Differential Temperature

Problem

Member 13 of the following truss is subject to a temperature change of +100 °C.

Calculate the deflections of node 1 and the final forces in the members.

. 7
4
(<232
6c®
L et TUNI
gs°
(-0
.7
1/‘{- t-o
1 1

Take: ¢ =2x10" 'C"'; EA=2x10" kN; the area of member 12 as 2A; the area of

member 13 as A; and, the area of member 14 as AV2.
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Solution

First we must recognize that there are two stages to the actions in the members:

e Stage [: all displacements are suppressed and only the temperature force in
member 13 1s allowed for;

e Stage II: displacements are allowed and the actions of the temperature force in
member 13 upon the rest of the structure are analyzed for.

The final result is then the summation of these two stages:

I

STAGE | +

FrroAL

The force induced in member 13 when displacements are suppressed is:
F. = EAx AT

=(2x10%)(2x107)(+100) (3.67)
=40kN
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Stage I

All displacements are suppressed. Thus:

5. =0; 5. =0 (3.68)

1x 1y

F,=0; Fi=F; F.,=0 (3.69)

Stage 11
Displacements are allowed occur and thus we must analyse the truss. Using the

matrix stiffness method, and recognizing that only joint 1 can displace, we have:
(F} =[K11](5,) (3.70)

Also, since we cleverly chose the node numbers, the member contributions are just:

K11=Kk11, + k11, +kl11,, (3.71)
e Member 12:
d \j c= B . __1 2 1
=cosa =cos120" = 5 =C _Z
o
DL::(ZO
X SEsina:sin12O°:§ 332:% 3052_?
I
13
EAY |¢® cs| 2x10*(2)| 4 4
k1112: e , e N—
L »| CS S 2.0 \/5 3
. 4 4 |
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e Member 13:

3

c=cosa=cosl80" =—-1 =c*=1

=1 °
X =180 S=sing=sinl80°'=0 =s’=0 =cs=0

c® ¢s “11 0
an, =(4) ¢ &]-20
L J,lcs s 1.0 |0 O

e Member 14:

1 1

C=cosa =c08225 =——— =cl==

J2 2
) ) | , 1 1
S=sinag=sIn225=— =S =— =CS=—
J2 2 2

k11 :(Ej {Cz CS}_2X104(J5){0.5 0.5}
=T,

cs | 1042 |05 05

Thus from equation (3.71) we have:

K11 =

(3.72)

2x10°] 7 2-43
4 |2-3 5

From the diagram for Stage II, we can see that the force applied to joint 1 is acting to

the right and so is positive. Thus:
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40) 2x10'| 7 2-\B][8,
_ 3.73
{o} 4 L—\/? 5 H@y} -

Solve this to get:

(3.74)

Using equation (3.21) we can now find the member forces for Stage II:

g _ 2x10°(2) ,{_1 QH 0-(1.15) }103 =+12.54 kN (3.75)

E 2.0 2 2 |]0-(~0.06)
4 0—(1.15
F! _2x10 [-1 0] (1.15) 107 =+23.0 kN (3.76)
1.0 0—(~0.06)
. 2x10°(V2) 0—(1.15)

}103 =+154 kN (3.77)

s
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Final

The final member forces are the superposition of Stage I and Stage II forces:

F,=F.+F!=0+12.54=12.54 kN (3.78)
F,=F!+F!=-40+23.0=—17.0 kN (3.79)
F,=F!+F!'=0+154=154kN (3.80)

Thus the final result is:

\2-S%

(o

(kn)
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3.9 Example 6 — Truss with Loads & Self Strains

Problem

Analyse the same truss as Example 5, allowing for the following additional load
sources:

e 80 kN acting horizontally to the left at node 1;

e 100 kN acting vertically downwards at node 1;

e Member 14 is 5V2 mm too short upon arrival on site.

All as shown below:
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Solution

Again we will separate the actions into Stage I and Stage Il scenarios.
Stage 1

Displacements are suppressed and as a result the only sources of forces are self-

straining forces:

Fac

F-r--p 44— F‘?‘

STRGE]

¥ Fa

The forces and displacements for Stage I are thus:

F. =40kN as before,

-3
F, = EAA—L:\/E(ZxIO“)m:IOOx/E N (3.81)
L 2
6, =0; S5,=0 (3.82)
F.=0; F!=-40; F!=100v2 (3.83)
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Stage 11

In this stage displacements are allowed and the forces in the self-strained members

are now applied to the joints, in addition to any external loads. Thus we have:

FaL
——» +—3°
Fr
oo

STAGE 4

Clearly we need to resolve the forces at node 1 into net vertical and horizontal forces:

o0 W
. U
! oo
- l
ig :({o io - o
l I o #ZOD
|00

Since the members have not changed from Example 5, we can use the same stiffness

matrix. Therefore we have :

~140] 2x10'| 7 2-3|[5,
Gl 7 P
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Solve this:

S| 4 1 5 N3-2](-140
{@y}_2X104[7-5—(2—\/5)2}[\/5—2 7 H—zoo}
RREHL

Using equation (3.21) we can find the member forces for Stage II:

(3.85)

e 2x10°(2) .{_l ﬁHO - (_3‘7)}103 — +98.1 kN (3.86)

’ 2.0 2 2 |[0-(-738)

. 2x10° 0—(=37)|, s
Rl == [-1 O]{O—(—TS)}IO =-74.0 kN (3.87)

10(2 (-
o 2 11.2552).{_ L }{8_2_2:;;}103:—162.6 KN (3.88)
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Final

As before, the final member forces are the Stage I and Stage II forces:

F,=F!+F!=0+98.1=98.1kN (3.89)
F,=F'+F"=-40-74.0=-114.0 kN (3.90)
F,=F.+F! =100y2 -162.6 =—21.6 kN (3.91)
Thus the final result is:
q9-|
7-Smm ni FerRets
Clen)

)ﬁme e
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3.10 Problems

1. Determine the displacements of joint 1 and the member forces for the following

truss. Take EA=2x10* kN.

2. Determine the displacements of joint 1 and the member forces for the following

truss. Take EA=2x10" kN, the area of both members is AN2.

1 —>

Ans. 6, =+5mm, 6, =0
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3. Using any pertinent results from Problem 3, determine the area of member 14
such that the horizontal displacement of node 1 is half what is was prior to the

installation of member 14. Determine also the force in member 14. Take

EA=2x10* kN,

Ans. A, =A, F,=-50 kN
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4. Beams

4.1 Beam Element Stiffness Matrix

To derive the beam element stiffness matrix, we recall some results obtained

previously, summarized here:

éf:lb ‘7—5‘[“

1

/ 6EZA
= ) %%
ﬂ,J \2EZ A
L3

Next we must adopt strict local element sign convention and node identification:

4

.

75 Dr. C. Caprani



Structural Analysis IV

Anti-clockwise moments and rotations (i.e. from the x-axis to the y-axis) are positive

and upwards forces are positive.

Thus for a vertical displacement of A at node i, now labelled o,, we have the

following ‘force’ vector:

N
M

e
)

(4.1)

< T M
P—
N
m

N

Similarly, applying the same deflection, but at node j, &, , gives:

12El
L
|| 6El
L2
=1 1261 [ #2)

= ) B

Next, applying a rotation to node i, 6, gives:
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6El

4El

<

(4.3)

I
—
NN

_ GE
L2
261

=< m

And a rotation to node j, 8, gives:

6El
L2

| |28

L

= 6El 0, (4.4)

— L2
41
L

= 1 B

Since all of these displacement could happen together, using superposition we thus

have the total force vector as:

12E1 ) 6EI ( 12EI 6El )
K E E E
F, 6EI 4EI 6EI 2EI
M. 2 T 2
o bods b bdged bods al L lg (4.5)
F [ ] 128N _ 6El 12EI _ 6El
M, B E E E
6EI 2EI _ 6El AEI
12 L 12 L

Writing this as a matrix equation, we have:
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(12El 6EI | 12EI  6El ]|
B EEREE L
Fol | 6B1 4E1 | 6EI  2E1 ||
M. 2 LT 2]
ot (O N S L.+ L L &% (4.6)
»[ | 12El  6El | 12EI  6EI ||5,
M, L HREE L ||e
6El  2El | G6El  4El
R L 1 L L
This is in the typical form:
{F*} =[k]{uw’} 4.7)
And so the beam element stiffness matrix is given by:
 12EI 6El | 12El  6EI
L HEE K
6EI  4El | GEl 2EI
K]=| -t Ly L L 4.8)
C12El 6El | 12EI  GEl
R LU L
6El  2El | 6El  4El
L L 1 L L

Next we note a special case where the vertical displacements of the beam nodes are

prevented and only rotations of the beam ends is allowed. In this case, all terms

relating to the translation DOFs are removed giving us the reduced stiffness matrix

for a beam on rigid vertical supports:
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4 el
L L

= 4.9

SRR 2
L L

As we did for trusses, we will often write these equations in terms of nodal sub-

matrices as:

{F,} {kll kleﬁ,}
= (4.10)
F| [k1 Kk2||3,

]
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4.2 Beam Element Loading

Applied Loads

Beam loads are different to truss loads since they can be located anywhere along the
element, not only at the nodes — termed intermodal loading Beams can also have
loads applied to the nodes — nodal loading. We deal with these two kinds of loads as

follows:

e Nodal loads: apply the load to the joint as usual;
¢ Inter-nodal loads: apply the equivalent concentrated loads to the joints (these are

just fixed end moment reactions to the load, with the direction reversed).

If a member’s nodes are locked against rotation, the member end forces due to inter-
nodal loading will just be the fixed end moment and force reaction vector we are

familiar with {F, }. If a member also displaces, the total member end forces are:

{F}, = {F.} +[k]{8} (4.11)

Thus the general stiffness equation becomes:

{F} =[K]{3} (4.12)

Where {F} 1s now the vector of net nodal loads:

Net Nodal Load = Nodal Load — > Fixed End Reactions (4.13)
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Lastly, we must note that inter-nodal loads on adjacent members will result in
multiple loads on a node. Thus we must take the algebraic sum of the forces/moments

on each node in our analysis, bearing in mind the sign convention.

As an example, the equivalent nodal loads for a UDL applied to a beam element are:

¥ < A
bu(_'z C W
vuLf fu:.)t_
W 1(&[9‘ wL{Q‘l w
¢ 4y

Member End Forces

After the deformations of the beam are known, we can use the element stiffness
matrices to recover the end forces/moments on each element due to both

deformations and the inter-nodal loading directly from equation (4.11).
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4.3 Example 7 — Simple Two-Span Beam

Problem

For the following beam, find the rotations of joints 2 and 3 and the bending moment

diagram. Take El =6x10° kNm®.

Solution

First we write the general equation in terms of nodal sub-matrices:

Fl Kll KIZ Kl3 6l
F2 = K21 K22 K23 62 (4' 14)
F3 K31 K32 K33 63

Next we note that the only possible displacements are the rotations of joints 2 and 3.

Thus we can restrict the equation by eliminating joint 1 as follows:

I
gk inial B Sk Gl S bl
F =K, K, K,|{5, (4.15)
F3 I|{31 K32 K33 0
|

3

To give:
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{F} _ {K KHS}
F3 K32 K33 53

(4.16)

Since this beam is on rigid vertical supports, we can use the beam stiffness matrix

given by equation (4.9). Thus we are left with two equations:

The member contributions to each of these terms are:

k,, = Term 22 of Member 12 + Term 11 of Member 23;

k,, = Term 12 of Member 23;

k,, =Term 21 of Member 23;

k,, = Term 22 of Member 23

Thus, for Member 12 we have:

481 2617 [4(6) 2(0)

L L 35| 6 6 3
k| = =10 =10
S P e PO L

L L .6 6 |

And for Member 23:
4(6) 2(6)
6 6 4 2
k| =10 =10’

[ ]23 2(6) 4(6) {2 4

L 6 6
83

(4.17)

(4.18)

(4.19)
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Thus the global stiffness equation is:

0l o)
~10 (4.20)
M, 2 4|6

To find the moments to apply to the nodes, we determine the fixed-end moments
caused by the loads on each members. Only Member 23 has load, and its fixed end

moments are:

o

30(% f )30

30% = 13e

Our sign convention is anti-clockwise positive. Thus the moments to apply to the

joints become (refer to equation (4.13)):

o ols 2o
_ =10 (4.21)
-30 2 4|6,

Solving the equation:

{92} 1 1 { 4 —2} {—30} . {—90/14}
= =10 rads (4.22)
o, 10° (8-4—2-2) -2 8 30 150/14

Since we know that anti-clockwise is positive, we can draw the displaced shape (in

mrads):
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Using the member stiffness matrices we can recover the bending moments at the end

of each member, now that the rotations are known, from equation (4.11):

M [0 4 21 [ o ~12.9

= L4+10° 10° _ kNm (4.23)
M,[ o 2 4 —90/14] ~ |-25.7
M,] (30 T4 2] . [-90/14) ([+257

- +10 10 - kNm (4.24)
M, [ =30 2 4 150/14 0

Thus the final BMD can be drawn as:

W/n\ u cwu)
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4.4 Example 8 — Non-Prismatic Beam

Problem

For the following beam, find the vertical deflection of joint 2 and the bending
moment diagram. Take El =12x10° kKNm”’.

1o e

Y
O hgr e/

[,‘f{j\LH‘L

A %

Solution

First we write the general equation in terms of nodal sub-matrices:

Fl Kll K12 K13 6l
F2 = K21 K22 K23 62 (4'25)
F3 K31 K32 K33 83

Next we note that the only possible displacements are those of joint 2. Thus we can

restrict the equation to:

{F,} =[K,,]{8,} (4.26)
The member contributions to K, are:

e Sub-matrix k22 of member 12;

e Sub-matrix k11 of member 23.
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That is:

[K,,]=[k22,]+[K1L,,] (4.27)

For member 12, we have, from equation (4.8):

12El  6El 12.12 612
T g 225 4.5
K2, =| - Loz 4 ol (4.28)
6EI  4EI 612 412 45 12
C L ¥ 4
And for member 23:
12El  GEI 12.24 6-24
T ; z 45 9
ki, =| = Loz £ e (4.29)
6EI  4EI 6-24 424 9 24
C L ¥ 4

Since the load is a directly applied nodal load we can now write equation (4.26),

using equations (4.27), (4.28), and (4.29), as:

{5 } {—100} {6.75 4.5} {52 }
VL= =10 Y (4.30)
M, 0 45 366,

Solving:

s, , 1 36 —4.5|(-100 L [-16.16
11=10 =10 (4.31)
6, (6.75-36-4.5-4.5)| 4.5 6.75|| 0 2.02
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Thus we have a downwards (negative) displacement of 16.2 mm and an

anticlockwise rotation of 2.02 mrads at joint 2, as shown:

L’lé'lé M

T 72.62 wirdols

Next we recover the element end forces. For member 12, from equation (4.6) we

have:
F, 225 45 1-225 45] 0 45.5 )
M| | 45 121-45 6| | 0 84.8
—4t=10°| —=———- - e — 1078 oot ==t (4.32)
F,, ~2.25 451225 45 ~16.16| |-45.5
M, 45 6 | 45 12 | 2.02 97.0
And for member 23:
F, (45 9 1-45 9] [-1616] [-545)
M| | 9 241 -9 12| | 202 -97.0
—2t=10°"| - ——-—=- O — 107 b= (4.33)
F, 45 9145 -9 0 54.5
M, 9 12, -9 24 0 -121.2

Thus the member end forces are:
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3({- % 47-0 7-0 -2
q 5, U= ),
| f.; 'fi'-s sis tf‘f*s

Us ;
100 ha)
LD

As can be seen, the load is split between the two members in a way that depends on

their relative stiffness.

The total solution is thus:

(©0o

=
Tess

lo Lo T X5

121-2
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45 Problems

1. Determine the bending moment diagram and rotation of joint 2. Take

El =10x10° kKNm®.

So ka)d Z.OMM
/ ¢ K 34
' 2}; 3
R

2. Determine the bending moment diagram and the vertical displacement under the

100 kN point load. Take El =10x10° kNm”®.
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3. Determine the bending moment diagram and the rotations of joints 1 and 2. Take

El =10x10° kKNm”.

FNUNSTNTINTY &

(“/\/\-«A/Ju.u\ } v

| Z8 31
77
;k 2

—= A
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5. Plane Frames

5.1 Plane Frame Element Stiffness Matrix

A plane frame element is similar to a beam element except for some differences:
e The presence of axial forces;

e The member may be oriented at any angle in the global axis system;

e The inter-nodal loads may be applied in the local or global coordinates.

These points are illustrated in the following:

Lastly, an easy way to deal with inter-nodal point loads (P,, P.) is to introduce a

node under the point load (splitting the member in two), then it is no longer inter-
nodal and so no transformations or equivalent load analysis is required. The downside
to this is that the number of equations increases (which is only really a problem for

analysis by hand).
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Axial Forces
To include axial forces, we can simply expand the beam element stiffness matrix to
allow for the extra degree of freedom of X-displacement at each node in the member

local coordinates. Thus expanding equation (4.8) to allow for the extra DOFs gives:

X, 0 0 !X, 0 0
|
12El  GEI ! 12El  6EI
O | O -
L L R
|
0 6EI 4EI 0 _6L|52| %
[K]=| g = — (5.1)
X, 0 01X, 0 0
|
o _12EL 6B}, 12El 6El
L N L L
|
0 65I 2E| ) _65I %
L I

However, these terms that account for axial force are simply those of a plane truss

element in its local coordinate system:
1 -1
[k]= E{ } (5.2)

Thus equation (5.1) becomes:
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|
EA 0 0 :_E 0 0
L | L
12EI  6El | 12ElI  6El
0 A
E i E E
0 6EI  4El ! 6El  2EI
2 ' T2
[k]= __E_A_"__L_____"I__"E"EA""J:_""_I_" (5-3)
=R o | =2 0 0
L | L
12El  6El | 12EI  6El
O 4= |/ TE
El 2F | El  4El
0 ° 2 : 0 _6 2
i L L L L |

This is the stiffness matrix for a plane frame element in its local coordinate system

and can also be written in terms of nodal sub-matrices as:
ki1l k12
[k] = (5.4)
k21 k22

Where the nodal sub-matrices are as delineated in equation (5.3).

Note that if axial forces are neglected, we can just use the regular beam element

stiffness matrix instead, though coordinate transformation may be required.
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Transformation to Global Coordinates

From the Appendix, the plane frame element stiffness matrix in global coordinates is:

(K ]=[T] [K][T] (5.5)

As a consequence, note that we do not need to perform the transformation when:
1. The member local axis and global axis system coincide;

2. The only unrestrained DOFs are rotations/moments.

Again from the Appendix, the transformation matrix for a plane frame element is:

[ cosa sina 0! 0 0 o0
—sina cosa O i 0 0 0
0 0 11 0 0 0

T=| - — e — (5.6)
0 0 0 | cosa sina 0
0 0 0 i —sina cosa O
0 0 0, O 0 1]

95 Dr. C. Caprani




Structural Analysis IV

Inter-nodal Loads

In plane frames, loads can be applied in the global axis system, or the local axis

system. For example, if we consider a member representing a roof beam, we can have

the following laods:
e Case 1: Gravity loads representing the weight of the roof itself;
e Case 2: Horizontal loads representing a horizontal wind;

e Case 3: Net pressure loads caused by outside wind and inside pressures.

. 1 —
'ﬂ [ 4
A - / Ly w
] 24
| — L
1 L
,!;_
(x I

Case 1 Case 2 Case 3

Most structural analysis software will allow you to choose the axis system of your
loads. However, in order to deal with these loads for simple hand analysis we must

know how it works and so we consider each case separately.

In the following the member local axis system has a prime (e.g. X’) and the global

axis system does not (e.g. X).
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Case 1: Vertically Applied Loads

In this case we can consider an equivalent beam which is the projection of the load

onto a horizontal beam of length L, :

14 W 1A
S ras 103
i ]
IR

* —t

Since the resulting nodal forces and moments are in the global axis system no further

work is required.
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Case 2: Horizontally Applied Loads:

Similarly to vertically applied loads, we can consider the horizontal projection of load
onto an equivalent member of length L, .

| 3T 2wt Fix

Again the resulting nodal loads are in the global axis system and do not require any
modification.
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Case 3: Loads Applied in Local Member Axis System
In this case there is no need for an equivalent beam and the fixed-fixed reactions are

worked out as normal:

However, there is a complication here since the reactions are now not all in the global
axis system. Thus the forces (not moments) must be transformed from the local axis

to the global axis system. Thus there is a simple case:

If axial forces are neglected, only moments are relevant and so no transformations are

required.

For generality though we can use the transformations given in the Appendix:

{F}=[T] {F} (5.7)

Writing this out in full for clarity, we have:
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F!| [cosa —-sina 0] 0 0 O[F;
Fi| |sing cosa 01 0 0 O||F
M 0 0 11 0 0 0]|/Mm!
TN O S S I i (5.8)
F. 0 0 0 | cosa —sina 0| Fy
F) 0 0 0 i sind cosa O|F)
M Lo 0o ol o 0 1]Mm
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5.2 Example 9 — Simple Plane Frame

Problem

For the following frame, determine the rotation of the joints and the bending moment

diagram. Neglect axial deformations. Take El =1x10° kNm”.

\z M/M ,/?_
aszw 6 kAl

2
4 ,
| LS

_ 1

it \
[ %,Jz, "{J'L

—

3\

Solution

The fact that we can neglect axial deformation makes this problem much simpler. As
a consequence, the only possible displacements are the rotations of joints 1 and 2.
Since node 3 is fully restricted out, we have the following partially-restricted set of

equations in terms of nodal sub-matrices:
F, K11 K12 (|9,
= (5.9
F, K21 K22 |9,

If we expand this further, we will be able to restrict out all but the rotational DOFs:
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M,

ZMZ

o)
(=)}
IS

The member contributions to each of these terms are:

e k,=Term 33 of Member 12;

e k,=Term 36 of Member 12;

Member 12:

K., =Term 63 of Member 12;

Looking at equation (5.3):

e Member 23:

Term 33 =

Term 36 =

Term 63 =

Term 66 =

Again, from equation (5.3):

k., = Term 66 of Member 12 + Term 33 of Member 23.

102

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)
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3
4ELY 410 e (5.15)

Term 33 = (—j =
L 23

Thus the system equation becomes:
2M, =10’ 426 (5.16)
>M, 2 8|0, '

Next we must find the net moments applied to each node. There are no directly

applied nodal moment loads, so the ‘force’ vector is, from equation (4.13):

{F} =—{F,} (5.17)
e Member 12 Moments:
R
R /A~~~ K\
Ml 7 7 2
A1 2
e I |
4 7}
me=W 20 im
12|_2 1212 . (5.18)
M= 2 kNm
12 1
e Member 23 Moments:
Dr. C. Caprani
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- 1
My ( ’;:,LQ_ ag) M3
AI’ YW []L "‘“—7{/

M223 ?:—:+2kNm
oo P10

Thus the net nodal loads become:

e B o

And so equation (5.16) is thus:

Gfls st

Which is solved to get:

6, 1 1 8 —21[-1 -3/14 .
— = x 107 rads
{02} 10° (4-8—2.2){—2 4 H—l} {—1/14}

The negative results indicate both rotations are clockwise.

(5.19)

(5.20)

(5.21)

(5.22)
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Lastly, we must find the member end forces. Since we only need to draw the bending

moment diagram so we need only consider the terms of the member stiffness matrix

relating to the moments/rotations (similar to equation (4.9)). Also, we must account

for the equivalent nodal loads as per equation (4.11):

e Member 12:

AR O I

e Member 23:

{Mf} {+2} {4 2} {—1/14} | {+12/7}
_ +10 10° = kNm
M2 -2 2 411 0 ~17/7

(5.23)

(5.24)
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5.3 Example 10 —Plane Frame Using Symmetry

Problem

For the following frame, determine the rotation of the joints, the displacement under
the 8 kN point load and the bending moment diagram. Neglect axial deformations.

Take El =1x10° kNm?.

4 IN
!

Solution

Again, the fact that we can neglect axial deformation makes this problem much
simpler. Since the structure is symmetrical and it is symmetrically loaded, it will not
sway. Further, because of this symmetry, we can adopt the following model for

analysis:

7
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Notice two things from this model:
e we have renumber the joints — there is no need to retain the old numbering system,;

e The remaining DOFs are 6, and &, - we can restrict all other DOFs. Thus in terms

of nodal sub-matrices we immediately have:
F, K11 K12 |9,
= (5.25)
F, K21 K22 ||9,

And expanding this further, we restrict out all other restrained DOFs:

zMz e k66

-k, -8
2Mol | K RO (5.26)
. . . . I- . . .
|
ZFsy T k86 i ’ kss ) §3y
|

The member contributions to each of these terms are:

e Kk, =Term 66 of Member 12 + Term 33 of Member 23;
e Kk, =Term 35 of Member 23;
o Kk, =Term 53 of Member 23;

o k., =Term 55 of Member 23.

Transformation of the member stiffness matrices is not required. Member 12 only has
a rotational DOF and Member 23’s local member coordinate system is parallel to the

global axis coordinate system.
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e Member 12:

From equation (5.3):

3
Term66:(%j _ 410 =4x10°
e Member 23:
Again, from equation (5.3):
3
Term33:(ﬂj _ 410 =4x10’°
L 23
3
Term35=(—6EZ|] __8 120 =—6x10°
L ), 1
3
Termsg:(ﬁ'f'j _ 010 a0
L ), 1
3
Term55=£12|§lj _12 310 =12x10’
L ), 1

Thus the system equation becomes:

6

se el She)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

The 4 kN point load is directly applied to node 3 so this causes no difficulty. The

equivalent nodal loads for the UDL are:
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(2
ICﬂL LV
o
BWC 12
212 (5.33)
e W12
2 1

Notice that we do not need to find the vertical reaction forces as there is no sway of

the frame and we are neglecting axial deformation.

The nodal load vector, from equation (4.13) is thus:

(XF}={F}~{F}= {_04} - {_01} = {j} (5.34)

And so equation (5.32) is thus:

[ T I 5.35
-4 7 |-6 12|94, (5:33)

Which is solved to get:

7

o0 FECIELe ol o)™ w639
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The negative results indicate the rotation is clockwise and the displacement

downwards, as may be expected:

Lastly then we find the bending moments. For member 12 only the terms relating to

bending moments are relevant.

e Member 12:
Mfz +1 , 4 2 0 73 +0.6
n (= +10 107 = kNm (5.37)
M, -1 2 411-0.2 -1.8

However, for member 23, the downwards deflection also causes moments and so the
relevant DOFs are rotation of node i and vertical movement of node j (as calculated
earlier). It is easier to see this if we write the member equation in full:

e Member 23:

] | _
)
|
ME| ] 4t =6 || =02 |
T GRS S I B P it 95 1 (5.38)
. . . . |o . . .
|
A ||-043
M2 20 =6
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Thus:
M +1.8
L= kNm (5.39)
M; +2.2

And so the BMD is:
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5.4 Problems

1. Determine the bending moment diagram and the rotation of joint 2. Take

El =10x10° kNm® and neglect axial deformations.

(Ans. 6, =5/6 mrads)

v

I 7 z 3y .

4 ‘Yer ez 7
EL S

I S e

2. For the frame of Problem 1, determine the bending moment diagram and the
rotation and vertical displacement of joint 2 if member 24 has EA=10x10° kN.
Neglect axial deformation in the other members.

(Ans. €, =0.833 mrads; 6, =—0.01mm)
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3. Determine the bending moment diagram, the rotation of joint 2, and the vertical

displacement under the 80 kN point load. Take El =10x10° kNm® and neglect

axial deformations.
(Ans. 6, =-1.071 mrads; 6, =—1.93mm )

¥o kAl
! 2 l 3 H"K ,.?d

Y
l+

A ;

L 3 15[ s| 3 J/

-1 A

4. Determine the bending moment diagram, the rotation of joint 2, and the horizontal

NN

displacements of joints 2 and 3. Take El =10x10° kNm® and neglect axial

deformations.
(Ans. 6, =-11.33 mrads; 6,, =44.0mm)

Folkad
v 3z
p:l -

/|

ZQ‘M-}/N T .
P . l — X
2" 2
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6. Appendix

6.1 Plane Truss Element Stiffness Matrix in Global Coordinates

Compatibility Conditions

Firstly we indentify the conditions of compatibility of a truss element nodal

deflections and the member elongation. We use the following notation for the

deflections at each node of the truss:

4
—_—> éﬂx

-

- 3'::(

If we now consider the deflected position of the truss member, we have:
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Six

Obviously the change in length of the truss will be related to the difference between
the nodal deflections. Hence, we define the changes in movements such that an

elongation gives positive changes:
Ao, =0, -3, Ao6,=6,, -0,

Moving the deflected position of node i back to its original location gives:

Looking more closely at the triangle of displacements at node j, and remembering
that we are assuming small deflections—which in this case means the deflected

position of the member is still at a rotation of #. Hence we have:

115 Dr. C. Caprani



Structural Analysis IV

And so the elongation is given by:

e=Ao,cosf+ Ao sind

6.1
=(5, -6, )cos0+(5, -5, )sinf D
Now multiply out and re-order to get:
e=-0,co80+—06, sinf+0,cosf+05,sind (6.2)
If we define a direction vector, a, and a displacement vector, 0, as:
—cosé (6,
—sin@ 5 o, 63)
o= = .
cosd 0,
siné o,

Then, from (6.2) and (6.3), we can say:
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e=0'd (6.4)

Thus we have related the end displacements to the elongation of the member which

therefore maintain compatibility of displacement.

117 Dr. C. Caprani




Structural Analysis IV

Virtual Work for Element Forces

Looking at the forces acting on the nodes of the bar element, we have:

This is a force system in equilibrium—the external nodal loading is in equilibrium
with the internal bar force, N. If we consider a pattern of compatible displacements

such as the following:
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We can apply virtual work to this:

And we have:

Set of forces in

equilibrium

! }
SR8y, =2 R
t 1

Set of compatible

displacements

Substituting in our notations for the bar element:

eN=Fo, +Fo,+F o, +F0, (6.5)
If we define the force vector, F, as:
I:ix
F i 6.6
“iE (6.6)
Fy
Then we can write (6.5) as:
F'd=¢eN (6.7)
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If we use (6.4) we how have:

F'6 = 0'dN (6.8)

Post-multiply both sides by ', and noting that N is a scalar, gives:

F'=a'N
F =aN (6.9)
Expanding this out gives:

F, —N cosd
F, —Nsind

= (6.10)
F. N cosé
F, N sin &

Which are the equations of equilibrium of the bar element:

Nocn©
—_— Neos ©

‘ A
-Ns~©

—> —Neee®
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Relating Forces to Displacements

Lastly, in order to relate the end forces to the element nodal displacements, we note

from the constitutive law:

EA
N=—:--¢e 6.11
2 (6.11)
And so from (6.9) we have:
F = aEe (6.12)
L
And using equation (6.4) gives:
F= aE—f\a‘(’i (6.13)

EA : : :
Hence the term o——a' relates force to displacement and is called the stiffness

matrix, k, which is evaluated by multiplying out terms:

(6.14)
=" [-cos@ —sin@ cosd sind]

And multiplying this out gives:
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cos’ @ cos@sin —cos’@  —cosBsind ]
. EA cos&siné’ sin’ 6’ —COoS 92sin¢9 —sinz' 0 6.15)
L —cos 6 —cosfsind cos @ cos@sind
| —cosfsingd  —sin’ G cos@sinf sin®@ |
And for clarity, we write out the final equation in matrix form and in full:
F = kb (6.16)
F, [ cos’d cos@sind —cos’@  —cosOsind |0,
F, | EA| cos@sind sin” & —cosfsin€d  —sin’6 || 9, 6.17)
F.| L| —cos’@ —cosfsind  cos’d cos@sind |0, |
F, | —cosfsinf  —sin’6 cos@sinf sin"g ||,

So for example, the stiffness that relates a horizontal force at node j to the horizontal

displacement at node j is:

And other relationships can be found similarly.
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6.2 Coordinate Transformations

Point Transformation

We consider the transformation of a single point P from one coordinate axis system

Xy to another X’y’:

From the diagram, observe:

‘OC‘ = X' coordinate of P

: (6.18)
‘PC‘ =y' coordinate of P

Also:

‘OB‘ = X coordinate of P

: (6.19)
‘PB‘ =y coordinate of P
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Next we can say:

OC|=|0A|+|AC| (6.20)
|PC|=|PD|-|CD)| (6.21)
Introducing the relevant coordinates:
|OA| = |OA|cos a = xcos ar (6.22)
|AC|=|BD|=|PB|sina = ysina (6.23)
Thus equation (6.20) becomes:
|OC|=x'=Xcosa + ysina (6.24)
Next we have:
|PD|=|PB|cosa = ycosa (6.25)
ICD|=|AB|=|0B|sina = xsina (6.26)
Thus equation (6.21) becomes:
IPC|=y'=ycosa —xsina (6.27)
Writing equations (6.24) and (6.27) together:
X'=Xcosa + ysina (6.28)
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y'=—-Xsina + ycos«x (6.29)

And now in matrix form gives:

X' cosa sina || X
o Bl 63
y —sina  cosa ||V

Often we write:

cC=cosax
. (6.31)
S=sIno

To give:

{;H—Cs j{i} (632)

Lastly, if we generically name the two coordinate systems as ( and (’, we then have

1n matrix form:
{a'} =T, ){q} (6.33)

Where [T, ] is the nodal transformation matrix given by:

cosa sina
T, = _ (6.34)
—sina  cosa
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Force/Displacement Transformation

Forces and moments can be oriented in the local member axis system or in the global
structure axis system. In general we will need to transform the forces and

displacements of both nodes, thus we write:

wils = ls)
= (6.35)
F'[ |0 T ||F

And finally we can write:

{F'} =[T]{F} (6.36)
Where:
(1] {TO H (6.37)
Similarly for deflections:
(5" =[T]{3} (6.38)

A very useful property of the transformation matrix (not derived here) is that it is

orthogonal. This means that its transpose is equal to its inverse:

[T] =[T]" (6.39)
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Thus when either a force or displacement is known for the local axis system, it can be

found in the global axis system as follows:

{F}=[1] {F} (6.40)

{8} =[T] {8} (6.41)
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Transformations for Plane Truss Element

For a plane truss member, there will be X and y components of force at each of its

nodes. Using the transformation for a point, we therefore have:

F. cosa sina ||F,
= (6.42)
F.| |-sina cosa ||F,
And so for a truss element, we have directly from equation (6.34):
cosa sina
T, ={ , } (6.43)
—sin@ cosa
And so, from equation (6.37),
[ cosa  sina 0 0
—sin¢ cosa 0 0
[T] = . (6.44)
0 0 cosa sina
0 0 -—sina cosa
For clarity, we write the transformation out in full:
F.l [ cosa sina 0 0 |(F,
F, —sina  cosa 0 0 F, (6.45)
= 0 0 cosa sina ||F, '
F.] | O 0 —sina cosa||F
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Transformations for Plane Frame Element
Based on the DOF transformation matrix for a plane truss member (in terms of
forces), we can determine the transformation matrix for a plane frame node quite

easily:

F’ cosaa sina O|[F
F,/ (=|-sina cosa 0| F (6.46)
M* 0 0 1|{|M

This is because a moment remains a moment in the plane. So for a single node, and

both nodes, we have, respectively:

{F} =[T, {F} (6:47)

(iakid
= (6.48)
F'[ o T ||F

Thus, we can now write the final transformation matrix for a plane frame element as:

—sina cosa 0
0 0 1

[ cosa sina 0! 0 0 0
—sina  cos« Oi 0 0 0
0 0 11 0 0 0
e b — (6.49)
| cosa  sina 0
|
|
|
|
|
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Element Stiffness Matrix Transformation

Using the general expression for a single element:

F* = K°5° (6.50)

Regardless of member type or the number of dimensions, we will always have some

coordinate transform from local to global coordinates such that:

F°=TF (6.51)
& =Td (6.52)

Hence from equation (6.50) we can write:

TF=K°T (6.53)

And so the force-displacement relationship in the global axis system is:

F=[T'K'T|s (6.54)

The term in brackets can now be referred to as the element stiffness matrix in global

coordinates. Thus, using equation (6.39), we write:

K. =TK°T (6.55)
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6.3 Past Exam Questions

Summer 2001

| ) Overecting the plane pin-winted itame shown in Lig QF the member §2 is lound o be 30 yam oo
long und is furced inlo place. The menber 14 is {hen heated by 100°CC. Then the external 10X kN
veruea! load is applied st node 1.
Using the Stiffness Method of Anclysts, deterrniine the dispacenent of e joints and the forces in
members 12 and 14 (20 marks)

(7 If member 13 is removed, and the same conditions apply as in (a) above, (ie. member 12 is
10 oum oo long, member 14 is heated by 100°C, and the external 100 kN vertical load is applied
at node 1), using the Siiffness Method of Analysts. deiermine the displacement of the joints.

(3 marks}
Assume EA =2 x 10°kN. .
Ascume the coelficient of thermal expansion o - 2 x 107 per °C.
Ihe cross-sectional area of the membis is as follows:

Harizettal inember 12 IA
Horizental member LS ZA
Dizpenul member 13 324
Verticel member 14: 3A

FIG. QI | Bmo L 2m
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Summer 2002

1. (@) On erecting the plane pin-jointed frame shown in Fig. Q 1 the member 13 is found to be 6v2 mm
too long and is forced into place. The member 15 is then heated by 100°C. Then the external
100 kN vertical load is applied at node 1.
Using the Stiffness Method of Analysis, determine the displacement of the joints and the forces in
the members. (20 marks)

(b) If member 14 is removed, and the same conditions apply as in (a) above, (i.e. member 13 is
62 mm too long, member 15 is heated by 100°C, and the external 100 kN vertical load is applied
at node 1), using the Stiffness Method of Analysis, determine the displacement of the joints.

(5 marks)
Assume EA =2 x 104 kN.
Assume the coefficient of thermal expansion ¢ = 2 % 10~ per °C.
The cross-sectional area of the members is as follows:

Horizontal member 12: 3A
Horizontal member 16: 3A
Diagonal member 13 3W2 A
Diagonal member 15 3W2 A
Vertical member 14 : 6A

¥

W 100kN
3m _ 3m 1
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Summer 2004

1. (@) On erecting the plane pin-jointed frame shown in Fig. Q1. the members 12 and 23 were each found
to be 5 mm too long and were forced into place. Then the external 200 kN vertical load was applied
at node 2.
Using the Stiffness Method of Analysis. determine the displacement of the joints and the forces in
members 12 and 23.
Assume EA = 2 x 10* kN,
The cross-section area of the members is as follows:

Horizontal members 12, 23, 45, 56: A
. - |
Diagonal members 15, 26, 24, 35: V2 A
Vertical member 25: ZA
Note: diagonals are not interconnected at their junction. (20 marks)

(b) Identify qualitatively the forces in the other members i.e. compression. tension, or zero force.
(5 marks)

DIAGONALS
NOT

INTERCONNECTED

Im

} Im N ~Im 4
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Summer 2006

1. Using the stiffness method of analysis determine the displacement of the joints and the forces in the
members of the plane pin-jointed frame shown in Fig. Q1 for each of load cases {a) and (b} below
acting separately.

(a) A proposed vertical load of 100 kN to be applied at joint 1 as shown, with all members being
the correct length.

(k) On erecting the truss if the member 12 is Smm too short and is forced into place and then the
member 15 is heated by 125 degrees C above normal, and A external 100 kN load applied.

Assume EA =2x10% kN and the coefficient of thermal expansion o = 2x10™9 per deg. C.
The cross-sectional area of the members is as follows:

Horizontal members 12 and 15: A
Diagonal members 13 and 14: V2A

(25 marks)

100kN

_é:-‘t

.
LS

om o m
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Sample Paper 2006/7

1. (a) Using the stiffness method, determine the displacement of the joints of the pin-jointed truss shown in Fig.
QI(a), under the load as shown.
(10 marks)

FIG. Q1(a)

(b) Members 15 and 16 are added to the truss of Fig. 1(a) to form the truss shown in Fig. Q1(b). However,
member 16 is found to be 15 mm too long and is forced into place. The same load of 100 kN is again to be
applied. Using the stiffness method, determine the displacement of the joints and the force in member 16.

(15 marks)
Take EA = 2x10* kN and the cross sectional areas of the members as:
Members 12, 13, and 16: 3A;
Diagonal Members 14 and 15: 3\2A.
7, /2 Z Zi 7,
5 3 4——x
e
(ap]
2 6 Y
\ 1 7
L 100 kN L
| 3m v 3m |
FIG. Q1(b)

Ans. (a) 25 kN; 75 kN; 25V2 kN;
(b) 50V2 kN; 156.1 kN; 60.4 kN; -100v2 kN; -50v2 kN
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Semester 1 2006/7

1. Using the stiffness method, determine the displacement of the joints and the forces in the members of the pin-
jointed truss shown in Fig. Q1, allowing for:

(1)  The 100 kN vertical load as shown, and;

(i) A lack of fit of member 12, which was found to be 5 mm too short upon arrival at site, and
which was then forced into place.

Take EA = 2x10* kN and the cross sectional areas of the members as:
*  Members 12: 3A;
«  Members 13 and 14:  3\2A.
(25 marks)

3m 3m

FIG. Q1

Ans. 50 kN; -75Y2 kN; -25V2 kN.
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Semester 1 Repeat 2006/7

1. Using the stiffness method, determine the displacement of the joints and the forces in the members of the pin-
jointed truss shown in Fig. Q1, allowing for:

(i) The 100 kN vertical load as shown, and;

(ii) A lack of fit of member 12, which was found to be 10\2 mm too short upon arrival at site, and
which was then forced into place.

Take EA = 2x10* kN and the cross sectional areas of all members as 3V2A.
(25 marks)

2

3m 3m

FIG. Q1

Ans. 125V2 kN: -50V2 kN; -75V2 kN.
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Semester 1 2007/8

QUESTION 1

Using the stiffness method, determine the displacement of the joints and the forces in the members of the pin-jointed
truss shown in Fig. Q1, allowing for:

1) The 100 kN load as shown, and;

(il)) A lack of fit of member 13, which was found to be 4 mm too short upon arrival at site, and which was then
forced into place;

(iii) A temperature rise of 20 °C in member 24.

Note:

Take EA=125x10" kN and the coefficient of thermal expansion & =2x107 °C™",
(25 marks)

1 2 100 kN
S
™
N 3

| 4 m §

FIG. Q1

Ans. -55.7 kN; +69.7 kN; -55.3 kN.
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Semester 1 2008/9

QUESTION 1

Using the stiffness method, for the continuous beam shown in Fig. Q1, do the following:
(1) determine the displacement of the joints;
(i)  draw the bending moment diagram;

(iii)  determine the reactions.

Note:
Take El =10x10° kNm?.
(25 marks)
100 k’V¢ 30 kN/m
N I 1 ] I T 1 by
\ LFAY € /
J 4 m 4m ¥ 6m | 4 m v

Ans. 98.7 kNm; 102.6 kNm; 60.9 kNm.
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Semester 1 2009/10

QUESTION 1

Using the stiffness method, for the frame shown in Fig. Q1, do the following:
(1) determine the vertical displacement at the centre of the middle span;
(i)  draw the bending moment diagram;

(iii)  determine the reactions.

Note:
Take El =10x10° kNm?>.
(25 marks)
80 kN‘ 48 kN/m ‘80 kN
R [ [ I | /
A 2El 2El :
£
AN\ AN\
3m 3m 6m 3m 3m
FIG. Q1

Ans. -11.88 mm

140 Dr. C. Caprani



Structural Analysis IV
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