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Structural Analysis IV 

1. Introduction 

1.1 Background 

The matrix stiffness method is the basis of almost all commercial structural analysis 

programs. It is a specific case of the more general finite element method, and was in 

part responsible for the development of the finite element method. An understanding 

of the underlying theory, limitations and means of application of the method is 

therefore essential so that the user of analysis software is not just operating a ‘black 

box’. Such users must be able to understand any errors in the modelling of structures 

which usually come as obtuse warnings such as ‘zero pivot’ or ‘determinant zero: 

structure unstable: aborting’. Understanding the basics presented herein should 

hopefully lead to more fruitful use of the available software. 

 

Note: LinPro is very useful as a study aid for this topic: right click on a member and 

select “Stiffness Matrix” to see the stiffness matrix for any member. 
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1.2 Basic Concepts 

Node 

The more general name for a connection between adjacent members is termed a node. 

For trusses and frames the terms joint and node are interchangeable. For more 

complex structures (e.g. plates), they are not. 

 

Element 

For trusses and frames element means the same as member. For more complex 

structures this is not the case. 

 

Degree of Freedom 

The number of possible directions that displacements or forces at a node can exist in 

is termed a degree of freedom (dof). Some examples are: 

• Plane truss: has 2 degrees of freedom at each node: translation/forces in the x and y 

directions. 

• Beams: have 2 degrees of freedom per node: vertical displacement/forces and 

rotation/moment. 

• Plane Frame: has 3 degrees of freedom at each node: the translations/forces similar 

to a plane truss and in addition, the rotation or moment at the joint. 

• Space Truss: a truss in three dimensions has 3 degrees of freedom: translation or 

forces along each axis in space. 

• Space Frame: has 6 degrees of freedom at each node: translation/forces along each 

axis, and rotation/moments about each axis. 
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Thus a plane truss with 10 joints has 20 degrees of freedom. A plane frame with two 

members will have three joints (one common to both members) and thus 9 degrees of 

freedom in total. 

 

Local and Global 

Forces, displacements and stiffness matrices are often derived and defined for an axis 

system local to the member. However there will exist an overall, or global, axis 

system for the structure as a whole. We must therefore transform forces, 

displacements etc from the local coordinate system into the global coordinate system. 
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1.3 Basic Approach 

Individual Element 

We consider here the most basic form of stiffness analysis. We represent a structural 

member by a spring which has a node (or connection) at each end. We also consider 

that it can only move in the x-direction. Thus it only has 1 DOF per node. At each of 

its nodes, it can have a force and a displacement (again both in the x-direction): 

 

 
 

Notice that we have drawn the force and displacement vector arrows in the positive x-

direction. Matrix analysis requires us to be very strict in our sign conventions. 

 

Using the basic relationship that force is equal to stiffness times displacement, we can 

determine the force at node 1 as: 

 

 ( )1 net displacement at 1F k=   

 

Thus: 

 

 ( )1 1 2 1 2F k u u ku ku= − = −  (1.1) 

 

Similarly for node 2: 

 

 ( )2 2 1 1 2F k u u ku ku= − = − +  (1.2) 
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We can write equations (1.1) and (1.2) in matrix form: 

 

  (1.3) 1

2 2

F uk k
F uk k

−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

1

 

Ands using matrix notation, we write: 

 

 { } [ ]{ }e =F k ue  (1.4) 

 

Here: 

• { }eF  is the element force vector;  

• [ ]k  is the element stiffness matrix; 

• { }eu  is the element displacement vector. 

 

It should be clear that the element stiffness matrix is of crucial importance – it links 

nodal forces to nodal displacements; it encapsulates how the element behaves under 

load. 

 

The derivation of the element stiffness matrix for different types of elements is 

probably the most awkward part of the matrix stiffness method. However, this does 

not pose as a major disadvantage since we only have a few types of elements to 

derive, and once derived they are readily available for use in any problem. 
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Assemblies of Elements 

Real structures are made up of assemblies of elements, thus we must determine how 

to connect the stiffness matrices of individual elements to form an overall (or global) 

stiffness matrix for the structure. 

 

Consider the following simple structure: 

 

 
 

Note that the individual elements have different stiffnesses,  and . Thus we can 

write the force displacement relationships for both elements as: 

1k 2k

 

  (1.5) 1 1 1

2 1 1

F k k u
F k k u

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

1

2

2

1

2

  (1.6) 2 2 2

3 32 2

F uk k
F uk k

−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

 

We can expand these equations so that they encompass all the nodes in the structure: 

 

 
1 1 1

2 1 1

3 3

0
0

0 0 0

F k k u
F k k u
F u

−⎧ ⎫ ⎡ ⎤⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢= −⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦⎩ ⎭

⎥
⎥

2

3

u
u

⎥
⎥

 (1.7) 

  (1.8) 
1 1

2 2 2

3 2 2

0 0 0
0
0

F u
F k k
F k k

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢= −⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
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We can add equations (1.7) and (1.8) to determine the total of both the forces and 

displacements at each node in the structure: 

 

 
1 1 1

2 1 1 2 2

3 2 2

0

0

F k k u
F k k k k u
F k k

1

2

3u

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢= − + −⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎥
⎥

2

 (1.9) 

 

As can be seen from this equation, by adding, we have the total stiffness at each node, 

with contributions as appropriate by each member. In particular node 2, where the 

members meet, has total stiffness 1k k+ . We can re-write this equation as: 

 

 { } [ ]{ }=F K u  (1.10) 

 

In which: 

•  is the force vector for the structure;  { }F

• [ ]K  is the global stiffness matrix for the structure; 

•  is the displacement vector for the structure. { }u
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1.4 Example 1 

Problem 

The following axially-loaded structure has loads applied as shown: 

 

 
 

The individual member properties are: 

 

Member Length (m) Area (mm2) Material, E (kN/mm2)

1 0.28 400 70 

2 0.1 200 100 

3 0.1 70 200 

 

Find the displacements of the connections and the forces in each member. 
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Solution 

Our first step is to model the structure with elements and nodes, as shown: 

 

 
 

Calculate the spring stiffnesses for each member: 

 

 3
1

1

70 400 100 10 kN/m
0.28

EAk
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (1.11) 

 3
2

2

100 200 200 10 kN/m
0.1

EAk
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (1.12) 

 3
3

3

200 70 140 10 kN/m
0.1

EAk
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (1.13) 

 

Next we calculate the individual element stiffness matrices: 

 

  (1.14) 1 3

2 2

100 100
10

100 100
F u
F u

−⎧ ⎫ ⎧ ⎫⎡
=⎨ ⎬ ⎨ ⎬⎢−⎣ ⎦⎩ ⎭ ⎩ ⎭

1⎤
⎥

2⎤
⎥  (1.15) 2 3

3 3

200 200
10

200 200
F u
F u

−⎧ ⎫ ⎧ ⎫⎡
=⎨ ⎬ ⎨ ⎬⎢−⎣ ⎦⎩ ⎭ ⎩ ⎭
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  (1.16) 3 3

4 4

140 140
10

140 140
F u
F u

−⎧ ⎫ ⎧ ⎫⎡
=⎨ ⎬ ⎨ ⎬⎢−⎣ ⎦⎩ ⎭ ⎩ ⎭

3⎤
⎥

 

We expand and add the element stiffness matrices to get: 

 

 
( )

( )

1 1

2 23

3 3

4 4

100 100 0 0
100 100 200 200 0

10
0 200 200 140 140
0 0 140 140

F u
F u
F u
F u

−⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥− + −⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥− + −⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪−⎣ ⎦⎩ ⎭ ⎩ ⎭

 (1.17) 

 

Notice how each member contributes to the global stiffness matrix: 

 

 
 

Notice also that where the member stiffness matrices overlap in the global stiffness 

matrix that the components (or entries) are added. Also notice that zeros are entered 

where there is no connection between nodes, e.g. node 1 to node 3. 

 

0 

0 0 

0 0 

0 

Node 1 Node 2 Node 3

Node 1 

Node 2 

Node 3 

Node 4 

Node 4
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We cannot yet solve equation (1.17) as we have not introduced the restraints of the 

structure: the supports at nodes 1 and 4. We must modify equation (1.17) in such a 

way that we will obtain the known results for the displacements at nodes 1 and 4. 

Thus: 

 

 
( )

( )

1

22 3

33

4

0 1 0 0 0
0 100 200 200 0

10
0 200 200 140 0

0 0 0 0 1

u
uF
uF
u

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥+ −⎪ ⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨ ⎬⎢ − +⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭

⎥
⎥

2
⎥

 (1.18) 

 

What we have done here is to ‘restrict’ the matrix: we have introduced a 1 on the 

diagonal of the node number, and set all other entries on the corresponding row and 

column to zero. We have entered the known displacement as the corresponding entry 

in force vector (zero). Thus when we now solve we will obtain . 1 4 0u u= =

 

For the remaining two equations, we have: 

 

  (1.19) 2 3

3 3

300 200
10

200 340
F u
F u

−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢−⎣ ⎦⎩ ⎭ ⎩ ⎭

 

And so: 

 

 
( )( ) ( )( )

2 3
3

3

340 200 50 31 1 1 10  m
200 300 100 2010 300 340 200 200 62

0.048
 mm

0.322

u
u

−−⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= ⋅ = ×⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− − − ⎣ ⎦⎩ ⎭ ⎩ ⎭⎩ ⎭
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

(1.20) 

 

To find the forces in the bars, we can now use the member stiffness matrices, since 

we know the end displacements: 
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Member 1 

 

  (1.21) 1 3

2

100 100 0 4.8
10 10

100 100 0.048 4.8
F
F

−− −⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧
= ×⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎩⎩ ⎭

3 ⎫
=

⎭

 

Thus Member 1 has a tension of 4.8 kN, since the directions of the member forces are 

interpreted by our sign convention: 

 

 
 

Also note that it is in equilibrium (as we might expect). 

 

Member 2 

 

  (1.22) 2 3

3

200 200 0.048 54.8
10 10

200 200 0.322 54.8
F
F

−− −⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧
= ×⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦ ⎩ ⎭ ⎩⎩ ⎭

3 ⎫
=

⎭

3 ⎫
=

⎭

 

Member 2 thus has tension of 54.8 kN. 

 

Member 3 

 

  (1.23) 3 3

4

140 140 0.322 45.08
10 10

140 140 0 45.08
F
F

−−⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧
= ×⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎣ ⎦ ⎩ ⎭ ⎩⎩ ⎭

 

Thus Member 3 has a compression of 45.08 kN applied to it. 
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1.5 General Methodology 

The general steps in Matrix Stiffness Method are: 

1. Calculate the member stiffness matrices 

2. Assemble the global stiffness matrix 

3. Restrict the global stiffness matrix and force vector 

4. Solve for the unknown displacements 

5. Determine member forces from the known displacements and member stiffness 

matrices 

6. Determine the reactions knowing member end forces. 
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1.6 Member contribution to global stiffness matrix 

Consider a member, ij, which links node i to node j. Its member stiffness matrix will 

be: 

 

 
 

Its entries must then contribute to the corresponding entries in the global stiffness 

matrix: 

 

 

k21ji

… 

… 

… 

Node i 

… 

Node j 

… 

Node i Node j

k11ij

… 

… 

… 

… 

… 

… 

… 

k12ij

… 

k22jj

… 

… … … … 

… 

… 

… 

… 

… … 

k11ijNode i 

k21ijNode j k22ij

Node i

k12ij

Node j
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If we now consider another member, jl, which links node j to node l. Its member 

stiffness matrix will be: 

 

 
 

And now the global stiffness matrix becomes: 

 

 
 

 

 
k21ij

… Node i 

Node j 

k11ij

… 

k12ij

k22ij + 

k11jl

… 

… 

… 

… 

… k22jl

k22jl k22jl

… 

… 

… 

… 

… … … … Node l 

Node i … Node j … Node l … … 

… … … … … … … … 

… … … … … … … … 

… … … … … … … … 

… … … … … … … … 

k11jlNode j 

k21jlNode l k22jl

Node j

k12jl

Node l
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In the above, the identifiers k11 etc are sub-matrices of dimension: 

 

ndof × ndof 

 

where ndof refers to the number of degrees of freedom that each node has. 
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1.7 Interpretation of Stiffness Matrix 

It is useful to understand what each term in a stiffness matrix represents. If we 

consider a simple example structure: 

 

 
 

We saw that the global stiffness matrix for this is: 

 

 
11 21 13 1 1

21 22 23 1 1 2 2

31 32 33 2 2

0

0

K K K k k
K K K k k k k
K K K k k

−⎡ ⎤ ⎡
⎢ ⎥ ⎢= = − +⎢ ⎥ ⎢
⎢ ⎥ ⎢ −⎣ ⎦ ⎣

K
⎤
⎥− ⎥
⎥⎦

  

 

If we imagine that all nodes are fixed against displacement except for node 2, then we 

have the following: 
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From our general equation: 

 

  (1.24) 
1 11 21 13 1

2 21 22 23

3 31 32 33

0
1
0

F K K K K
F K K K K
F K K K K

⎧ ⎫ ⎡ ⎤⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦⎩ ⎭ ⎩ ⎭

2

22

32

=

2

 

Thus: 

 

 
1 12 1

2 22 1

3 32 2

F K k
F K k k
F K k

−⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (1.25) 

 

These forces are illustrated in the above diagram, along with a free-body diagram of 

node 2. 

 

Thus we see that each column in a stiffness matrix represents the forces required to 

maintain equilibrium when the column’s DOF has been given a unit displacement.  

 

This provides a very useful way to derive member stiffness matrices. 

 

Dr. C. Caprani 21



Structural Analysis IV 

1.8 Restricting a Matrix 

In Example 1 we solved the structure by applying the known supports into the global 

stiffness matrix. We did this because otherwise the system is unsolvable; technically 

the determinant of the stiffness matrix is zero. This mathematically represents the fact 

that until we apply boundary conditions, the structure is floating in space. 

 

To impose known displacements (i.e. supports) on the structure equations we modify 

the global stiffness matrix and the force vector so that we get back the zero 

displacement result we know. 

 

Considering our two-element example again, if node 1 is supported, . Consider 

the system equation: 

1 0u =

 

  (1.26) 
1 11 21 13

2 21 22 23

3 31 32 33

F K K K u
F K K K u
F K K K u

⎧ ⎫ ⎡ ⎤⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦⎩ ⎭

1

2

3

⎥
⎥

2

3

u
u

 

Therefore to obtain   from this, we change  and  as follows: 1 0u = K F

 

  (1.27) 
1

2 22 23

3 32 33

0 1 0 0
0
0

u
F K K
F K K

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 

Now when we solve for  we will get the answer we want: 1u 1 0u = . In fact, since we 

now do not need this first equation, we could just consider the remaining equations: 

 

  (1.28) 2 22 23

3 32 33

F K K u
F K K u

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
2

3
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And these are perfectly solvable.  

 

Thus to summarize: 

 

To impose a support condition at degree of freedom i: 

1. Make the force vector element of DOF i zero; 

2. Make the i column and row entries of the stiffness matrix all zero; 

3. Make the diagonal entry (  of the stiffness matrix 1. ),i i
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2. Plane Trusses 

2.1 Introduction 

Trusses are assemblies of members whose actions can be linked directly to that of the 

simple spring studied already: 

 

 EAk
L

=  (2.1) 

 

There is one main difference, however: truss members may be oriented at any angle 

in the xy coordinate system (Cartesian) plane: 

 

 
 

Thus we must account for the coordinate transformations from the local member axis 

system to the global axis system. 
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2.2 Truss Element Stiffness Matrix 

For many element types it is very difficult to express the element stiffness matrix in 

global coordinates. However, this is not so for truss elements. Firstly we note that the 

local axis system element stiffness matrix is given by equation (1.3): 

 

 

 [ ] 1 1
1 1

k k
k

k k
− −⎡ ⎤ ⎡

= =
⎤

⎢ ⎥ ⎢− − ⎥
⎣ ⎦ ⎣

k
⎦

 (2.2) 

 

Next, introducing equation (2.1), we have: 

 

 [ ] 1 1
1 1

EA
L

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

k  (2.3) 

 

However, this equation was written for a 1-dimensional element. Expanding this to a 

two-dimensional axis system is straightforward since there are no y-axis values: 

 

 [ ]

1 0 1 0
0 0 0 0
1 0 1 0

0 0 0 0

i

i

j

j

x
yEA
xL
y

←−⎡ ⎤
⎢ ⎥←⎢=

←⎢−
⎢ ⎥←⎣ ⎦

k ⎥
⎥

 (2.4) 

 

Next, using the general element stiffness transformation equation (See the Appendix): 

 

 [ ] [ ] [ ][ ]Tk = T k T  (2.5) 

 

 And noting the transformation matrix for a plane truss element from the Appendix: 
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cos sin 0 0
sin cos 0 0
0 0 cos sin
0 0 sin cos

P

P

α α
α α

α α
α α

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥−⎣ ⎦

T 0
T =

0 T
 (2.6) 

 

We have: 

 

[ ]

1cos sin 0 0 1 0 1 0
sin cos 0 0 0 0 0 0
0 0 cos sin 1 0 1 0
0 0 sin cos 0 0 0 0

cos sin 0 0
sin cos 0 0
0 0 cos sin
0 0 sin cos

EA
L

α α
α α

α α
α α

α α
α α

α α
α α

−
−⎡ ⎤ ⎡

⎢ ⎥ ⎢−⎢ ⎥ ⎢= ⋅
⎢ ⎥ ⎢−
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

k

 (2.7) 

 

Carrying out the multiplication gives: 

 

 

2 2

2 2

2 2

2 2

cos cos sin cos cos sin
cos sin sin cos sin sin

cos cos sin cos cos sin
cos sin sin cos sin sin

EA
L

α α α α α α
α α α α α α

α α α α α α
α α α α α α

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

k  (2.8) 

 

If we examine the nodal sub-matrices and write cosc α≡ , sins α≡ : 

 

 [ ]

2 2

2 2

2 2

2 2

c cs c cs
cs s cs sEA

L c cs c cs
cs s cs s

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

k  (2.9) 
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Labelling the nodal sub-matrices as: 

 

 [ ] ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

k11 k12
k

k21 k22
 (2.10) 

 

Then we see that the sub-matrices are of dimension 2 × 2 (No. DOF × No. DOF) and 

are: 

 

 
2

2

c csEA
L cs s
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

k11  (2.11) 

 

And also note: 

 

  (2.12) k11 = k22 = -k12 = -k21

 

Therefore, we need only evaluate a single nodal sub-matrix (k1 ) in order to find the 

total element stiffness matrix in global coordinates. 

1

 

Dr. C. Caprani 27



Structural Analysis IV 

2.3 Element Forces 

The forces applied to a member’s ends are got from the element equation: 

 

 { } [ ]{ }e =F k ue

i

 (2.13) 

 

Expanding this in terms of nodal equations we have: 

 

  (2.14) i

j j

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭

F δk11 k12
F δk21 k22

 

Thus we know: 

 

 j i j= ⋅ + ⋅F k21 δ k22 δ  (2.15) 

 

From which we could determine the member’s axial force. However, for truss 

members, we can determine a simple expression to use if we consider the change in 

length in terms of the member end displacements: 

 

 x jxL ixδ δ∆ = −  (2.16) 

 y jyL iyδ δ∆ = −  (2.17) 

 

And using the coordinate transforms idea: 

 

 cos sinx yL L Lα α∆ = ∆ + ∆  (2.18) 

 

Also we know that the member force is related to the member elongation by: 
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 EAF L
L

= ⋅∆  (2.19) 

 

Thus we have: 

 

 cos sinx y

EAF L L
L

α α⎡ ⎤= ⋅ ∆ + ∆⎣ ⎦  (2.20) 

 

And introducing equations (2.16) and (2.17) gives: 

 

 [ ]cos sin jx ix

jy iy

EAF
L

δ δ
α α

δ δ
−⎧ ⎫

= ⋅ ⎨ ⎬−⎩ ⎭
 (2.21) 

 

A positive result from this means tension and negative compression. 
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2.4 Example 2: Basic Truss 

Problem 

Analyse the following truss using the stiffness matrix method. 

 

 
 

Note that: 

• 2200 kN/mmE = ; 

• The reference area is . 2100mmA =
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Solution 

STEP 1: Determine the member stiffness matrices: 

 

Member 12 

The angle this member makes to the global axis system and the relevant values are: 

 

 

 21 1cos cos45
22

c cα≡ = = ⇒ =o  

 21 1sin sin 45
2 22

s sα≡ = = ⇒ = ⇒ =o 1cs  

 

Therefore: 

 

 
2

12 2
12

0.5 0.5200 100 2
0.5 0.510 2

c csEA
L cs s

⎡ ⎤ ⎡ ⎤⋅⎛ ⎞= =⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
k11  

 

Thus: 

 

 3
12

0.5 0.5
10

0.5 0.5
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

k11  (2.22) 

 

Notice that the matrix is symmetrical as it should be. 
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Member 23 

The angle this member makes to the global axis system and the relevant values are: 

 

 
 

 21 1cos cos45
22

c cα≡ = = ⇒ =o  

 21 1sin sin 45
2 22

s sα≡ = = − ⇒ = ⇒ = −o 1cs  

 

Therefore: 

 

 
2

23 2
23

0.5 0.5200 100 2
0.5 0.510 2

c csEA
L cs s

−⎡ ⎤ ⎡ ⎤⋅⎛ ⎞= =⎜ ⎟ ⎢ ⎥ ⎢ ⎥−⎝ ⎠ ⎣ ⎦⎣ ⎦
k11  

 

Thus: 

 

 3
23

0.5 0.5
10

0.5 0.5
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
k11  (2.23) 

 

 

Again the matrix is symmetrical. 
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STEP 2: Assemble the global stiffness matrix 

 

For 3 nodes, the unrestricted global stiffness matrix will look as follows: 

 

 
11 12 13

21 22 23

31 32 33

Node 1
Node 2
Node 3

←⎡ ⎤
⎢ ⎥= ←⎢ ⎥
⎢ ⎥←⎣ ⎦

K K K
K K K K

K K K
 (2.24) 

 

Note that each of the sub-matrices is a 2×2 matrix, e.g.: 

 

 11 12

21 22

Node 1 
Node 1 

xx xy

yx yy

k k x
k k y

←⎡ ⎤
= ⎢ ⎥←⎣ ⎦

11K  (2.25) 

 

The member stiffness nodal sub-matrices contribute to the global stiffness nodal sub-

matrices as follows: 

 

  (2.26) 
11 12 13 12 12

21 22 23 12 12 23 23

31 32 33 23 23

⎡ ⎤ ⎡
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

K K K k11 k12 0
K K K K k21 k22 + k11 k12

K K K 0 k21 k22

⎤
⎥
⎥
⎥⎦

 

Expanding this out and filling in the relevant entries from equations (2.22) and (2.23)  

whilst using equation (2.12) gives: 

 

Dr. C. Caprani 33



Structural Analysis IV 

 3

0.5 0.5 0.5 0.5 0 0
0.5 0.5 0.5 0.5 0 0
0.5 0.5 1 0 0.5 0.5

10
0.5 0.5 0 1 0.5 0.5
0 0 0.5 0.5 0.5 0.
0 0 0.5 0.5 0.5 0.5

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

K

5

 (2.27) 

 

STEP 3: Write the solution equation in full 

 

 { } [ ]{ }F = K δ  (2.28) 

 

Thus, keeping the nodal sub-matrices identifiable for clarity: 

 

 

1 1

1 1

23

2

3 3

3 3

0.5 0.5 0.5 0.5 0 0
0.5 0.5 0.5 0.5 0 0

0 0.5 0.5 1 0 0.5 0.5
10

100 0.5 0.5 0 1 0.5 0.5
0 0 0.5 0.5 0.5 0.5
0 0 0.5 0.5 0.5 0.5

x x

y y

x

y

x x

y y

R
R

R
R

δ
δ
δ
δ
δ
δ

−⎧ ⎫ ⎧⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪=⎨ ⎬ ⎨⎢ ⎥− − −⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− −
⎪ ⎪ ⎪⎢ ⎥

− −⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

 (2.29) 

 

In which we have noted: 

• 1xR  is the reaction at node 1 in the x-direction (and similarly for the others); 

• The force at node 2 is 0 in the x-direction and -100 kN (downwards) in the y-

direction. 
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STEP 4: Restrict the equation. 

Now we impose the boundary conditions on the problem. We know: 

• 1 1 0x yδ δ= =  since node 1 is pinned; 

• 3 3 0x yδ δ= =  again, since node 3 is pinned. 

 

Thus equation (2.29) becomes: 

 

 

1

1

23

2

3

3

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

10
100 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

x

y

x

y

x

y

δ
δ
δ
δ
δ
δ

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪=⎨ ⎬ ⎢− ⎨ ⎬⎥

⎪ ⎪ ⎪⎢ ⎥ ⎪
⎪ ⎪ ⎪⎢ ⎥ ⎪
⎪ ⎪ ⎪⎢ ⎥ ⎪

⎪ ⎪⎩ ⎭ ⎣ ⎦⎩ ⎭

 (2.30) 

 

Since both DOFs are restricted for nodes 1 and 3, we can thus write the remaining 

equations for node 2: 

 

 23

2

0 1 0
10

100 0 1
x

y

δ
δ
⎧ ⎫⎧ ⎫ ⎡ ⎤

=⎨ ⎬ ⎨⎢ ⎥−⎩ ⎭ ⎣ ⎦⎩ ⎭
⎬  (2.31) 

 

STEP 5: Solve the system 

The y-direction is thus the only active equation: 

 

 3
2100 10 yδ− =  (2.32) 

 

Thus: 

 

 2 0.1 m 100 mmyδ = − = ↓  (2.33) 
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STEP 6: Determine the member forces 

For truss member’s we outlined a simple method encompassed in equation (2.21). In 

applying this to Member 12 we note: 

• 1 1 0x yδ δ= =  since it is a support; 

• 2 0xδ =  by solution; 

• 2 0.1yδ = −  again by solution. 

Thus: 

 [ ]cos sin jx ix

jy iy

EAF
L

δ δ
α α

δ δ
−⎧ ⎫

= ⋅ ⎨ ⎬−⎩ ⎭
 

 3 0 01 1 10010 50 2 kN
0.1 02 2 2

F
−⎧ ⎫⎡ ⎤= = −⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭

= −  (2.34) 

 

And so Member 12 is in compression, as may be expected. For Member 23 we 

similarly have: 

 

 ( )
3

0 01 1 10010 50 2 kN
0 0.12 2 2

F
−⎧ ⎫⎡ ⎤= − = − = −⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭

 (2.35) 

 

And again Member 23 is in compression. Further, since the structure is symmetrical 

and is symmetrically loaded, it makes sense that Member’s 12 and 23 have the same 

force. 

 

STEP 7: Determine the reactions 

To determine the remaining unknown forces we can use the basic equation now that 

all displacements are known: 
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1

1

3

3

3

0.5 0.5 0.5 0.5 0 0 0
0.5 0.5 0.5 0.5 0 0 0

0 0.5 0.5 1 0 0.5 0.5 0
10

100 0.5 0.5 0 1 0.5 0.5 0.1
0 0 0.5 0.5 0.5 0.5 0
0 0 0.5 0.5 0.5 0.5 0

x

y

x

y

R
R

R
R

−⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥−⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥− −⎪ ⎪ =⎨ ⎬ ⎨⎢ ⎥− − −⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− −
⎪ ⎪ ⎪⎢ ⎥

− −⎪ ⎪ ⎣ ⎦⎩ ⎭

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎬− ⎪
⎪
⎪

⎩ ⎭

 (2.36) 

 

Thus we have: 

 

  (2.37) [ ]1

0
0.5 0.5 50kN

0.1xR ⎧ ⎫
= − = −⎨ ⎬−⎩ ⎭

  (2.38) [ ]1

0
0.5 0.5 50kN

0.1yR ⎧ ⎫
= − = +⎨ ⎬−⎩ ⎭

  (2.39) [ ]3

0
0.5 0.5 50kN

0.1xR ⎧ ⎫
= − = −⎨ ⎬−⎩ ⎭

  (2.40) [ ]3

0
0.5 0.5 50kN

0.1yR ⎧ ⎫
= − = +⎨ ⎬−⎩ ⎭

 

Again note that the sign indicates the direction along the global coordinate system. 

We can now plot the full solution: 
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2.5 Example 3: Adding Members 

Problem 

Analyse the truss of Example 2 but with the following member 14 added: 

 

 
 

Solution 

With the addition of node 4 we now know that the nodal sub-matrices global stiffness 

equation will be 4×4 with the fully expanded matrix being 16×16. Rather than 

determine every entry in this, let’s restrict it now and only determine the values we 

will actually use. Since nodes 1, 3 and 4 are pinned, all their DOFs are fully restricted 

out. The restricted equation thus becomes: 

 

 { } [ ]{ }2 2=F K22 δ  (2.41) 

 

Next we must identify the contributions from each member: 

• We already know the contributions of Members 12 and 23 from Example 2.  

• The contribution of Member 24 is to nodes 2 and 4. Since node 4 is restricted, we 

only have the contribution  to K2 . 24k11 2

Thus K2  becomes: 2
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 12 23 24= + +K22 k22 k11 k11  (2.42) 

 

Next determine : this member makes an angle of 270° to the global axis system  

giving: 

24k11

 

 2cos cos270 0 0c cα≡ = = ⇒ =o  

 2sin sin 270 1 1 0s s csα≡ = = − ⇒ = ⇒ =o  

 

Therefore: 

 

 
2

24 2
24

0 0200 100
0 110

c csEA
L cs s

⎡ ⎤ ⎡ ⎤⋅⎛ ⎞= =⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
k11  

 

Thus: 

 

 3
24

0 0
10

0 2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

k11  (2.43) 

 

Hence the global restricted stiffness matrix becomes: 

 

  (2.44) 3 3 31 0 0 0 1 0
10 10 10

0 1 0 2 0 3
⎡ ⎤ ⎡ ⎤ ⎡

= + =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

K22 ⎤
⎥

 

Writing the restricted equation, we have: 

 

 23

2

0 1 0
10

100 0 3
x

y

δ
δ
⎧ ⎫⎧ ⎫ ⎡ ⎤

=⎨ ⎬ ⎨⎢ ⎥−⎩ ⎭ ⎣ ⎦⎩ ⎭
⎬  (2.45) 
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From which we find the only equation 

 

 ( )3
2100 10 3 yδ− =  (2.46) 

 

Thus: 

 

  (2.47) 2 0.033 m 33.3 mmyδ = − = ↓

 

The member forces are: 

 

 3
12

0 01 110 23.6kN
0.033 02 2

F
−⎧ ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭

= −  (2.48) 

 ( )
3

23

0 01 110 23.6kN
0 0.0332 2

F
−⎧ ⎫⎡ ⎤= − = −⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭

 (2.49) 

  (2.50) [ ]3
24

0 0
10 0 2 66.6kN

0.033 0
F

−⎧ ⎫
= ⎨ ⎬− −⎩ ⎭

= −

 

Thus we have the following solution: 
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2.6 Example 4: Using Symmetry 

Problem 

Analyse the truss of Example 3 taking advantage of any symmetry: 

 

 
 

Solution 

Looking at the structure it is clear that by splitting the structure down the middle 

along member 24 that we will have two equal halves: 

 

 
 

Notice that we have changed the following: 
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• The load is halved since it is now equally shared amongst two halves; 

• Similarly the area of member 24 is halved. 

 

We now analyse this new truss as usual. However, we can make use of some previous 

results. For Member 12: 

 

 3
12

0.5 0.5
10

0.5 0.5
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

k11  (2.51) 

 

And for Member 24 

 

 3 3
24

0 0 0 01 10 10
0 2 0 12

⎧ ⎫⎡ ⎤ ⎡
= =⎨ ⎬

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣⎩ ⎭

k11
⎦

⎤
⎥
⎦

 (2.52) 

 

Since the area is halved from that of Example 3, its stiffnesses are halved. 

 

In restricting we note that the only possible displacement is node 2 in the y-direction. 

However, we will keep using the node 2 sub-matrices until the last moment: 

 

  (2.53) 3 3 30.5 0 0 0 0.5 0
10 10 10

0 0.5 0 1 0 1.5
⎡ ⎤ ⎡ ⎤ ⎡

= + =⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

K22

 

Thus: 

 

 23

2

0 0.5 0
10

50 0 1.5
x

y

δ
δ
⎧ ⎫⎧ ⎫ ⎡ ⎤

=⎨ ⎬ ⎨⎢ ⎥−⎩ ⎭ ⎣ ⎦⎩ ⎭
⎬  (2.54) 

 

And now imposing the boundary condition 2 0xδ = : 
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 { } [ ]{ }3
250 10 1.5 yδ− =  (2.55) 

 

From which we solve for the displacement: 

 

 
{ } [ ]{ }3

2

50 10 1.5

0.033 m 33.3 mmyδ

− =

= − = ↓
 (2.56) 

 

This (of course) is the same result we obtained in Example 3. For the member forces 

we have: 

 

 3
12

0 01 110 23.6kN
0.033 02 2

F
−⎧ ⎫⎡ ⎤= ⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭

= −

= −

 (2.57) 

  (2.58) [ ]3
24

0 0
10 0 1 33.3kN

0.033 0
F

−⎧ ⎫
= ⎨ ⎬− −⎩ ⎭

 

Member 12 has the same force as per Example 3 as is expected. 

 

It might appear that Member 24 has an erroneous force result. It must be remembered 

that this is the force in the half-member (brought about since we are using symmetry). 

Therefore the force in the full member is 2 33.3 66.6 kN× =  as per Example 3. 
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2.7 Self-Strained Structures 

Introduction 

A self-strained structure is one where strains are induced by sources other than 

externally applied loads. The two main examples are temperature difference and lack 

of fit of a member. For example consider the effect if member 13 in the following 

structure was too long and had to be ‘squeezed’ into place: 

 

 
 

It should be intuitively obvious that to ‘squeeze’ the member into place a 

compressive force was required to shorten it to the required length: 
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Once the member has been put in place, the source of the ‘squeezing’ is removed. 

Since the member wants to spring back to its original length, it pushes on its joints: 

 

 
 

In this way members 12 and 14 will now go into tension whilst member 13 will 

remain in compression, but a smaller compression than when it was ‘squeezed’ into 

place since joint 1 will deflect to the right some amount. 

 

In a similar way to lack of fit, examined above, if member 13 had been subject to a 

temperature increase it would try to elongate. However this elongation is restrained 

by the other members inducing them into tension and member 13 into some 

compression. 
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Lack of Fit 

We consider a member with original length of OL  that is required to be of length 

. Thus a change in length of Req'dL L∆  must be applied: 

 

 Req'd OL L L= + ∆  (2.59) 

 

Thus: 

•  is positive: the member is too short and must be lengthened to get into place; L∆

•  is negative, it is too long and must be shortened to get into place. L∆

 

Thus we must apply a force to the member that will cause a change in length of L∆ . 

From basic mechanics: 

 

 OFLL
EA

∆ =  (2.60) 

 

Thus the force required is: 

 

 
O

LF EA
L
∆

= ⋅  (2.61) 

 

From the above sign convention for L∆ : 

• F is positive when the member must be put into tension to get it in place; 

• F is negative when the member must be put into compression to get it in place. 

 

Lastly, remember to apply the member force in opposite direction to the member’s 

nodes. 
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Temperature Change 

We consider a member that is subject to a differential (i.e. different to the rest of the 

structure) temperature change of T∆  degrees Celsius. Also we must know the 

coefficient of linear thermal expansion, α , for the material. This is the change in 

length, per unit length, per unit change in temperature: 

 

 
O

L C
L

α
⎛ ⎞∆

≡ ⎜ ⎟
⎝ ⎠

o  (2.62) 

 

Thus the thermal strain induced in the member is: 

 

 T Tε α= ∆  (2.63) 

 

And so the change in length is: 

 

 OL L Tα∆ = ∆  (2.64) 

 

Also, since Eσ ε= , we find the force in the member: 

 

 T T TF A EAσ ε= =  (2.65) 

 

So finally, from equation (2.63), the force required to suppress the temperature 

change is: 

 

 TF EA Tα= ∆  (2.66) 

 

Once again, apply this force in the opposite direction to the member’s nodes. 
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2.8 Example 5 – Truss with Differential Temperature 

Problem 

Member 13 of the following truss is subject to a temperature change of +100 °C. 

Calculate the deflections of node 1 and the final forces in the members. 

 

 
 

Take: 5 12 10  Cα − −= × o ; 42 10  kNEA = × ; the area of member 12 as 2A; the area of 

member 13 as A; and, the area of member 14 as A√2. 
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Solution 

First we must recognize that there are two stages to the actions in the members: 

• Stage I: all displacements are suppressed and only the temperature force in 

member 13 is allowed for; 

• Stage II: displacements are allowed and the actions of the temperature force in 

member 13 upon the rest of the structure are analyzed for. 

The final result is then the summation of these two stages: 

 

 
 

The force induced in member 13 when displacements are suppressed is: 

 

 ( )( )(4 52 10 2 10 100

40kN

TF EA T

)
α

−

= ∆

= × × +

=

 (2.67) 
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Stage I 

All displacements are suppressed. Thus: 

 

 1 0; 0x 1yδ δ= =  (2.68) 

  (2.69) 12 13 140; ; 0I I
TF F F F= = I =

 

Stage II 

Displacements are allowed occur and thus we must analyse the truss. Using the 

matrix stiffness method, and recognizing that only joint 1 can displace, we have: 

 

 { } [ ]{ }1 1=F K11 δ  (2.70) 

 

Also, since we cleverly chose the node numbers, the member contributions are just: 

 

 12 13 14= + +K11 k11 k11 k11  (2.71) 

 

• Member 12: 

 

21 1cos cos120
2 4

c cα≡ = = − ⇒ =o  

23 3sin sin120
2 4

s sα≡ = = ⇒ = ⇒ = −o 3
4

cs  

 

 ( )2 4

12 2
23

1 3
2 10 2 4 4

2.0 3 3
4 4

c csEA
L cs s

⎡ ⎤
−⎢ ⎥×⎡ ⎤⎛ ⎞ ⎢ ⎥= =⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦ −⎢ ⎥⎣ ⎦

k11  
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• Member 13: 

 
2cos cos180 1 1c cα≡ = = − ⇒o =  
2sin sin180 0 0 0s s csα≡ = = ⇒ = ⇒o =  

 

 

 
2 4

13 2
23

1 02 10
0 01.0

c csEA
L cs s

⎡ ⎤ ⎡ ⎤×⎛ ⎞= =⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
k11  

 

• Member 14: 

 

21 1cos cos225
22

c cα≡ = = − ⇒ =o  

21 1sin sin 225
2 22

s sα 1cs−
≡ = = ⇒ = ⇒ =o  

 

 

 
( )42

14 2
23

2 10 2 0.5 0.5
0.5 0.51.0 2

c csEA
L cs s

×⎡ ⎤ ⎡ ⎤⎛ ⎞= =⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
k11  

 

Thus from equation (2.71) we have: 

 

 
4 7 2 32 10

4 2 3 5

⎡ ⎤−×
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
K11  (2.72) 

 

From the diagram for Stage II, we can see that the force applied to joint 1 is acting to 

the right and so is positive. Thus: 
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4

1

1

40 7 2 32 10
0 4 2 3 5

x

y

δ
δ

⎡ ⎤− ⎧ ⎫⎧ ⎫ ×
= ⎢⎨ ⎬ ⎨ ⎬

−⎩ ⎭ ⎢ ⎥⎩ ⎭⎣ ⎦
⎥  (2.73) 

 

Solve this to get: 

 

 ( )
1

24
1

3

5 3 2 44 1
02 10 3 2 77 5 2 3

1.15
10  m

0.06

x

y

δ
δ

−

⎡ ⎤−⎧ ⎫ ⎧ ⎫
= ⎢ ⎥⎨ ⎬ ⎨× ⎡ ⎤ − ⎩ ⎭⎢ ⎥⎩ ⎭ ⋅ − − ⎣ ⎦⎢ ⎥⎣ ⎦

⎧ ⎫
= ⎨ ⎬−⎩ ⎭

0
⎬

 (2.74) 

 

Using equation (2.21) we can now find the member forces for Stage II: 

 

 
( )
( )

4
3

12

0 1.152 10 1 3 10 12.54 kN
0 0.062.0 2 2

IIF −
⎡ ⎤ ⎧ − ⎫×

= ⋅ − = +⎨ ⎬⎢ ⎥ − −⎩ ⎭⎣ ⎦
 (2.75) 

 

 ( ) [ ] ( )
( )

4
3

13

0 1.152 10 2
1 0 10 23.0 kN

0 0.061.0
IIF −⎧ − ⎫×
= ⋅ − = +⎨ ⎬− −⎩ ⎭

 (2.76) 

 

 
( ) ( )

( )

4

3
14

2 10 2 0 1.151 1 10 15.4 kN
0 0.061.0 2 2 2

IIF −
× ⎧ − ⎫⎡ ⎤= ⋅ − − = +⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭

 (2.77) 
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Final 

The final member forces are the superposition of Stage I and Stage II forces: 

 

  (2.78) 12 12 12 0 12.54 12.54 kNI IIF F F= + = + =

  (2.79) 13 13 13 40 23.0 17.0 kNI IIF F F= + = − + = −

  (2.80) 14 14 14 0 15.4 15.4 kNI IIF F F= + = + =

 

Thus the final result is: 
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2.9 Example 6 – Truss with Loads & Self Strains 

Problem 

Analyse the same truss as Example 5, allowing for the following additional load 

sources: 

• 80 kN acting horizontally to the left at node 1; 

• 100 kN acting vertically downwards at node 1; 

• Member 14 is 5√2 mm too short upon arrival on site. 

All as shown below: 
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Solution 

Again we will separate the actions into Stage I and Stage II scenarios. 

 

Stage I 

Displacements are suppressed and as a result the only sources of forces are self-

straining forces: 

 

 
 

The forces and displacements for Stage I are thus: 

 

 40kNTF =  as before,  

 

 ( )
3

4 5 2 102 2 10 100 2 kN
2L

LF EA
L

−

∆

∆ ×
= = × =  (2.81) 

 

 1 0; 0x 1yδ δ= =  (2.82) 

 12 13 140; 40; 100 2I I IF F F= = − =  (2.83) 
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Stage II 

In this stage displacements are allowed and the forces in the self-strained members 

are now applied to the joints, in addition to any external loads. Thus we have: 

 

 
 

Clearly we need to resolve the forces at node 1 into net vertical and horizontal forces: 

 

 
 

Since the members have not changed from Example 5, we can use the same stiffness 

matrix. Therefore we have : 

 

 
4

1

1

140 7 2 32 10
200 4 2 3 5

x

y

δ
δ

⎡ ⎤− − ⎧ ⎫⎧ ⎫ ×
= ⎢⎨ ⎬ ⎨− −⎩ ⎭ ⎢ ⎥⎩ ⎭⎣ ⎦

⎥ ⎬  (2.84) 
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Solve this: 

 

 ( )
1

24
1

3

5 3 2 144 1
2002 10 3 2 77 5 2 3

3.7
10  m

7.8

x

y

δ
δ

−

⎡ ⎤− −⎧ ⎫ 0⎧ ⎫
= ⎢ ⎥⎨ ⎬ ⎨−× ⎡ ⎤ − ⎩ ⎭⎢ ⎥⎩ ⎭ ⋅ − − ⎣ ⎦⎢ ⎥⎣ ⎦

−⎧ ⎫
= ⎨ ⎬−⎩ ⎭

⎬

 (2.85) 

 

Using equation (2.21) we can find the member forces for Stage II: 

 

 
( )
( )

4
3

12

0 3.72 10 1 3 10 98.1 kN
0 7.82.0 2 2

IIF −
⎡ ⎤ ⎧ − − ⎫×

= ⋅ − = +⎨ ⎬⎢ ⎥ − −⎩ ⎭⎣ ⎦
 (2.86) 

 

 ( ) [ ] ( )
( )

4
3

13

0 3.72 10 2
1 0 10 74.0 kN

0 7.81.0
IIF −⎧ − − ⎫×
= ⋅ − = −⎨ ⎬− −⎩ ⎭

 (2.87) 

 

 
( ) ( )

( )

4

3
14

2 10 2 0 3.71 1 10 162.6 kN
0 7.81.0 2 2 2

IIF −
× ⎧ − − ⎫⎡ ⎤= ⋅ − − = −⎨ ⎬⎢ ⎥ − −⎣ ⎦ ⎩ ⎭

 (2.88) 
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Final 

As before, the final member forces are the Stage I and Stage II forces: 

 

  (2.89) 12 12 12 0 98.1 98.1 kNI IIF F F= + = + =

  (2.90) 13 13 13 40 74.0 114.0 kNI IIF F F= + = − − = −

 14 14 14 100 2 162.6 21.6 kNI IIF F F= + = − = −  (2.91) 

 

Thus the final result is: 
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2.10 Problems 

1. Determine the displacements of joint 1 and the member forces for the following 

truss. Take 42 10  kNEA = × . 

 

 
 

 

2. Determine the displacements of joint 1 and the member forces for the following 

truss. Take 42 10  kNEA = × , the area of both members is A√2. 

 

 
Ans. 1 5 mmxδ = + , 1 0yδ =  
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3. Using any pertinent results from Problem 3, determine the area of member 14 

such that the horizontal displacement of node 1 is half what is was prior to the 

installation of member 14. Determine also the force in member 14. Take 
42 10  kNEA = × ,  

 

 
Ans. 14A A= ,  14 50 kNF = −
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3. Beams 

3.1 Beam Element Stiffness Matrix 

To derive the beam element stiffness matrix, we recall some results obtained 

previously, summarized here: 

 

 
 

Next we must adopt strict local element sign convention and node identification: 
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Anti-clockwise moments and rotations (i.e. from the x-axis to the y-axis) are positive 

and upwards forces are positive. 

 

Thus for a vertical displacement of ∆  at node i, now labelled iyδ , we have the 

following ‘force’ vector: 

 

 

3

2

3

2

12

6

12

6

iy

i
iy

jy

j

EI
L

F EI
M L
F EI

LM
EI
L

δ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪−
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪

⎪ ⎪
⎩ ⎭

 (3.1) 

 

Similarly, applying the same deflection, but at node j, jyδ , gives: 

 

 

3

2

3

2

12

6

12

6

iy

i
jy

jy

j

EI
L

F EI
M L
F EI

LM
EI
L

δ

⎧ ⎫−⎪ ⎪
⎪ ⎪⎧ ⎫
⎪ ⎪−⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪

⎪ ⎪−
⎩ ⎭

 (3.2) 

 

Next, applying a rotation to node i, iθ , gives: 
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2

2

6

4

6

2

iy

i
i

jy

j

EI
L

F EI
M L
F EI

LM
EI
L

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪−
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪

⎪ ⎪
⎩ ⎭

 (3.3) 

 

And a rotation to node j, jθ , gives: 

 

 

2

2

6

2

6

4

iy

i
j

jy

j

EI
L

F EI
M L
F EI

LM
EI
L

θ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎧ ⎫
⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪ =⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪−
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪

⎪ ⎪
⎩ ⎭

 (3.4) 

 

Since all of these displacement can happen together, using superposition we thus 

have the total force vector as: 

 

 

3 2 3

2 2

3 2 3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

iy

i
iy i jy

jy

j

EI EI EI EI
L L L L

F EI EI EI EI
M L L L L
F EI EI EI EI

L L L LM
EI EI EI EI
L L L L

δ θ δ

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧−⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ = + + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪− − −
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩

j

2

2

⎫

θ

⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

 (3.5) 

 

Writing this in matrix and vector form, we have: 
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3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

iy iy

i i

jy jy

j j

EI EI EI EI
L L L L

F EI EI EI EI
M L L L L
F EI EI EI EI

L L L LM
EI EI EI EI
L L L L

δ
θ
δ
θ

⎡ ⎤−⎢ ⎥
⎢ ⎥⎧ ⎫ ⎧
⎢ ⎥−⎪ ⎪ ⎪
⎢⎪ ⎪ ⎪=⎨ ⎬ ⎨⎢

⎪ ⎪ ⎪⎢ ⎥− − −
⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩

⎢ ⎥
−⎢ ⎥

⎣ ⎦

⎫
⎪

⎥ ⎪
⎬⎥
⎪
⎪⎭

 (3.6) 

 

This is in the typical form: 

 

 { } [ ]{ }e =F k ue  (3.7) 

 

And thus the beam element stiffness matrix is given by: 

 

 [ ]

3 2 3 2

2 2

3 2 3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

2

EI EI EI EI
L L L L
EI EI EI EI
L L L L

EI EI EI EI
L L L L
EI EI EI EI
L L L L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢

= ⎢
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎣ ⎦

k ⎥
⎥  (3.8) 

 

Next we note a special case where the vertical displacements of the beam nodes are 

prevented and only rotations of the beam ends is allowed. In this case, all terms 

relating to the translation DOFs are removed giving us the reduced stiffness matrix 

for a beam on rigid vertical supports: 
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 [ ]
4 2

2 4

EI EI
L L
EI EI
L L

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

k  (3.9) 

 

As we did for trusses, we will often write these equations in terms of nodal sub-

matrices as: 

 

  (3.10) i

j j

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭

F δk11 k12
F δk21 k22

i
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3.2 Beam Element Loading 

Applied Loads 

Beam loads are different to truss loads since they can be located anywhere along the 

element, not only at the nodes – termed intermodal loading Beams can also have 

loads applied to the nodes – nodal loading. We deal with these two kinds of loads as 

follows: 

 

• Nodal loads: apply the load to the joint as usual; 

• Inter-nodal loads: apply the equivalent concentrated loads to the joints (these are 

just fixed end moment reactions to the load, with the direction reversed). 

 

If a member’s nodes are locked against rotation, the member end forces due to inter-

nodal loading will just be the fixed end moment and force reaction vector we are 

familiar with { }FF . If a member also displaces, the total member end forces are: 

 

 { } { } [ ]{ }Tot
= +FF F k δ  (3.11) 

 

Thus the general stiffness equation becomes: 

 

 { } [ ]{ }=F K δ  (3.12) 

 

Where {  is now the vector of net nodal loads: }F

 

 Net Nodal Load  Nodal Load Fixed End Reactions= −∑  (3.13) 
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Lastly, we must note that inter-nodal loads on adjacent members will result in 

multiple loads on a node. Thus we must take the algebraic sum of the forces/moments 

on each node in our analysis, bearing in mind the sign convention. 

 

As an example, the equivalent nodal loads for a UDL applied to a beam element are: 

 

 
 

Member End Forces 

After the deformations of the beam are known, we can use the element stiffness 

matrices to recover the end forces/moments on each element due to both 

deformations and the inter-nodal loading directly from equation (3.11). 
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3.3 Example 7 – Simple Two-Span Beam 

Problem 

For the following beam, find the rotations of joints 2 and 3 and the bending moment 

diagram. Take 3 26 10  kNmEI = × . 

 

 
 

Solution 

First we write the general equation in terms of nodal sub-matrices: 

 

  (3.14) 
1 11 12 13

2 21 22 23

3 31 32 33

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

F K K K δ
F K K K δ
F K K K δ

1

2

3

⎥
⎥

1

2

3

⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

F K K K δ
F K K K δ

 

Next we note that the only possible displacements are the rotations of joints 2 and 3. 

Thus we can restrict the equation by eliminating joint 1 as follows: 

 

1 1

  (3.15) 
1 12 13

2 21 22 23

3 31 32 33

⎧ ⎫ ⎡ ⎤ ⎧ ⎫F K K K δ

 

To give: 
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  (3.16) 2 22 23

3 32 33

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭

F K K δ
F K K δ

2

3

2

3

 

Since this beam is on rigid vertical supports, we can use the beam stiffness matrix 

given by equation (3.9). Thus we are left with two equations: 

 

 2 22 23

3 23 33

M k k
M k k

θ
θ

⎧ ⎫ ⎡ ⎤ ⎧
=⎨ ⎬ ⎨⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩

⎫
⎬
⎭

 (3.17) 

 

The member contributions to each of these terms are: 

• ; 22 Term 22 of Member 12 + Term 11 of Member 23k =

• ; 23 Term 12 of Member 23k =

• ; 32 Term 21 of Member 23k =

•   33 Term 22 of Member 23k =

 

Thus, for Member 12 we have: 

 

 [ ]
( ) ( )

( ) ( )
3

12

4 6 2 64 2
4 26 610 10

2 4 22 6 4 6
6 6

EI EI
L L
EI EI
L L

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

3

4
⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

k  (3.18) 

 

And for Member 23: 

 

 [ ]
( ) ( )

( ) ( )
3

23

4 6 2 6
4 26 610 10
2 42 6 4 6

6 6

⎡ ⎤
⎢ ⎥

3 ⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥⎣ ⎦

k  (3.19) 
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Thus the global stiffness equation is: 

 

 2 3

3 3

8 2
10

2 4
M
M

2θ
θ

⎧ ⎫ ⎧⎡ ⎤
=⎨ ⎬ ⎨⎢ ⎥

⎣ ⎦⎩ ⎭ ⎩

⎫
⎬
⎭

 (3.20) 

 

To find the moments to apply to the nodes, we determine the fixed-end moments 

caused by the loads on each members. Only Member 23 has load, and its fixed end 

moments are: 

 

 
 

Our sign convention is anti-clockwise positive. Thus the moments to apply to the 

joints become (refer to equation (3.13)): 

 

 23

3

30 8 2
10

30 2 4
θ
θ
⎧ ⎫⎧ ⎫ ⎡ ⎤

− =⎨ ⎬ ⎨⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭
⎬  (3.21) 

 

Solving the equation: 

 

 
( )

2 3
3

3

4 2 30 90 141 1 10  rads
2 8 30 150 1410 8 4 2 2

θ
θ

−− − −⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥−⋅ − ⋅ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 (3.22) 

 

Since we know that anti-clockwise is positive, we can draw the displaced shape (in 

mrads): 
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Using the member stiffness matrices we can recover the bending moments at the end 

of each member, now that the rotations are known, from equation (3.11): 

 

 1 3 3

2

0 4 2 0 12.9
10 10  kNm

0 2 4 90 14 25.7
M
M

− −⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ − −⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 (3.23) 

 

 2 3 3

3

30 4 2 90 14 25.7
10 10  kNm

30 2 4 150 14 0
M
M

− − +⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 (3.24) 

 

Thus the final BMD can be drawn as: 
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3.4 Example 8 – Non-Prismatic Beam 

Problem 

For the following beam, find the vertical deflection of joint 2 and the bending 

moment diagram. Take 3 212 10  kNmEI = × . 

 

 
 

Solution 

First we write the general equation in terms of nodal sub-matrices: 

 

  (3.25) 
1 11 12 13

2 21 22 23

3 31 32 33

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

F K K K δ
F K K K δ
F K K K δ

1

2

3

⎥
⎥

 

Next we note that the only possible displacements are those of joint 2. Thus we can 

restrict the equation to: 

 

 { } [ ]{ }2 22 2=F K δ  (3.26) 

 

The member contributions to  are: 22K

• Sub-matrix k2  of member 12; 2

• Sub-matrix k1  of member 23. 1
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That is: 

 

 [ ] [ ] [ ]22 12 23= +K k22 k11  (3.27) 

 

For member 12, we have, from equation (3.8): 

 

 
3 2 3 2

3 3
12

2 2

12 6 12 12 6 12
2.25 4.54 410 10

6 4 6 12 4 12 4.5 12
4 4

EI EI
L L
EI EI
L L

⋅ ⋅⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥ −⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅ −⎣ ⎦⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

k22  (3.28) 

 

And for member 23: 

 

 
3 2 3 2

3 3
23

2 2

12 6 12 24 6 24
4.5 94 410 10

6 4 6 24 4 24 9 2
4 4

EI EI
L L
EI EI
L L

⋅ ⋅⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

4
⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ ⋅ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

k11  (3.29) 

 

Since the load is a directly applied nodal load we can now write equation (3.26), 

using equations (3.27), (3.28), and (3.29), as: 

 

 2 3

2 2

100 6.75 4.5
10

0 4.5 36
yF

M
2 yδ
θ

−⎧ ⎫ ⎧⎧ ⎫ ⎡ ⎤
= =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥
⎩ ⎭ ⎣ ⎦⎩ ⎭ ⎩

⎫
⎬
⎭

 (3.30) 

 

Solving: 

 

 
( )

2 3 3

2

36 4.5 100 16.16110 10
4.5 6.75 0 2.026.75 36 4.5 4.5

yδ
θ

− −− − −⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥−⋅ − ⋅ ⎬

⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭
 (3.31) 
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Thus we have a downwards (negative) displacement of 16.2 mm and an 

anticlockwise rotation of 2.02 mrads at joint 2, as shown: 

 

 
 

Next we recover the element end forces. For member 12, from equation (3.6) we 

have: 

 

 

1

1 3 3

2

2

2.25 4.5 2.25 4.5 0 45.5
4.5 12 4.5 6 0 84.8

10 10
2.25 4.5 2.25 4.5 16.16 45.5
4.5 6 4.5 12 2.02 97.0

y

y

F
M
F
M

−

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧
⎪ ⎪

⎫
⎢ ⎥ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥− − − − −⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪−

⎪
⎪
⎬
⎪
⎪⎣ ⎦ ⎩ ⎭ ⎩⎩ ⎭ ⎭

 (3.32) 

 

And for member 23: 

 

 

2

2 3 3

3

3

4.5 9 4.5 9 16.16 54.5
9 24 9 12 2.02 97.0

10 10
4.5 9 4.5 9 0 54.5
9 12 9 24 0 121.2

y

y

F
M
F
M

−

− − −⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎨ ⎬ ⎨⎢ ⎥− − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪− −⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

⎪
⎬  (3.33) 

 

Thus the member end forces are: 
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As can be seen, the load is split between the two members in a way that depends on 

their relative stiffness. 

 

The total solution is thus: 
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3.5 Problems 

1. Determine the bending moment diagram and rotation of joint 2. Take 
3 210 10  kNmEI = × . 

 

 
 

2. Determine the bending moment diagram and the vertical displacement under the 

100 kN point load. Take 3 210 10  kNmEI = × . 
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3. Determine the bending moment diagram and the rotations of joints 1 and 2. Take 
3 210 10  kNmEI = × . 
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4. Plane Frames 

4.1 Plane Frame Element Stiffness Matrix 

A plane frame element is similar to a beam element except for some differences: 

• The presence of axial forces; 

• The member may be oriented at any angle in the global axis system; 

• The inter-nodal loads may be applied in the local or global coordinates. 

These points are illustrated in the following: 

 

 
 

Lastly, an easy way to deal with inter-nodal point loads ( , ) is to introduce a 

node under the point load (splitting the member in two), then it is no longer inter-

nodal and so no transformations or equivalent load analysis is required. The downside 

to this is that the number of equations increases (which is only really a problem for 

analysis by hand). 

GP LP
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Axial Forces 

To include axial forces, we can simply expand the beam element stiffness matrix to 

allow for the extra degree of freedom of x-displacement at each node in the member 

local coordinates. Thus expanding equation (3.8) to allow for the extra DOFs gives: 

 

 [ ]

11 14

3 2 3 2

2 2

41 44

3 2 3

2 2

0 0 0 0
12 6 12 60 0

6 4 6 20 0

0 0 0 0
12 6 12 60 0

6 2 6 40 0

X X

2

EI EI EI EI
L L L L
EI EI EI EI
L L L L

X X
EI EI EI EI

L L L L
EI EI EI EI
L L L L

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎣ ⎦

k  (4.1) 

 

However, these terms that account for axial force are simply those of a plane truss 

element in its local coordinate system: 

 

 [ ] 1 1
1 1

EA
L

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

k  (4.2) 

 

Thus equation (4.1) becomes: 
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 [ ]

3 2 3 2

2 2

3 2 3

2 2

0 0 0 0

12 6 12 60 0

6 4 6 20 0

0 0 0 0

12 6 12 60 0

6 2 6 40 0

EA EA
L L

2

EI EI EI EI
L L L L
EI EI EI EI
L L L L

EA EA
L L

EI EI EI EI
L L L L
EI EI EI EI
L L L L

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥= ⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

k  (4.3) 

 

This is the stiffness matrix for a plane frame element in its local coordinate system 

and can also be written in terms of nodal sub-matrices as: 

 

 [ ] ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

k11 k12
k

k21 k22
 (4.4) 

 

Where the nodal sub-matrices are as delineated in equation (4.3). 

 

Note that if axial forces are neglected, we can just use the regular beam element 

stiffness matrix instead, though coordinate transformation may be required. 
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Transformation to Global Coordinates 

Directly, from the Appendix, the plane frame element stiffness matrix in global 

coordinates is thus: 

 

 [ ] [ ][ ]Te⎡ ⎤⎣ ⎦K = T k T  (4.5) 

 

As a consequence, note that we do not need to perform the transformation when: 

1. The member local axis and global axis system coincide; 

2. The only unrestrained DOFs are rotations/moments. 

 

In which, (again from the Appendix), the transformation matrix for a plane frame 

element is: 

 

 

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0
0 0 0 cos sin
0 0 0 sin cos 0
0 0 0 0 0

α α
α α

α α
α α

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

T
0
0

1

 (4.6) 
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 Inter-nodal Loads 

In plane frames, loads can be applied in the global axis system, or the local axis 

system. For example, if we consider a member representing a roof beam, we can have 

the following laods: 

• Case 1: Gravity loads representing the weight of the roof itself; 

• Case 2: Horizontal loads representing a horizontal wind; 

• Case 3: Net pressure loads caused by outside wind and inside pressures. 

 

Case 1 Case 2 Case 3 

 

Most structural analysis software will allow you to choose the axis system of your 

loads. However, in order to deal with these loads for simple hand analysis we must 

know how it works and so we consider each case separately. 

 

In the following the member local axis system has a prime (e.g. x’) and the global 

axis system does not (e.g. x). 
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Case 1: Vertically Applied Loads 

In this case we can consider an equivalent beam which is the projection of the load 

onto a horizontal beam of length XL : 

 

 
 

Since the resulting nodal forces and moments are in the global axis system no further 

work is required. 
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Case 2: Horizontally Applied Loads: 

Similarly to vertically applied loads, we can consider the horizontal projection of load 

onto an equivalent member of length YL . 

 
 

Again the resulting nodal loads are in the global axis system and do not require any 

modification. 
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Case 3: Loads Applied in Local Member Axis System 

In this case there is no need for an equivalent beam and the fixed-fixed reactions are 

worked out as normal: 

 

 
 

However, there is a complication here since the reactions are now not all in the global 

axis system. Thus the forces (not moments) must be transformed from the local axis 

to the global axis system. Thus there is a simple case: 

 

If axial forces are neglected, only moments are relevant and so no transformations are 

required. 

 

For generality though we can use the transformations given in the Appendix: 

 

 { } [ ] { }'TF = T F  (4.7) 

 

Writing this out in full for clarity, we have: 
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'

'

'

'

cos sin 0 0 0 0
sin cos 0 0 0 0

0 0 1 0 0 0
0 0 0 cos sin 0
0 0 0 sin cos 0
0 0 0 0 0 1

ij ij
ix ix
ij ij

iy iy
ij ij
i i
ij ij
jx jx
ij ij
jy jy
ij ij
j j

F F
F F
M M
F F
F F
M M

α α
α α

α α
α α

⎧ ⎫ ⎧ ⎫−⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪=⎨ ⎬ ⎨⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

⎪
⎬  (4.8) 
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4.2 Example 9 – Simple Plane Frame 

Problem 

For the following frame, determine the rotation of the joints and the bending moment 

diagram. Neglect axial deformations. Take 3 21 10  kNmEI = × . 

 

 
 

Solution 

The fact that we can neglect axial deformation makes this problem much simpler. As 

a consequence, the only possible displacements are the rotations of joints 1 and 2. 

Since node 3 is fully restricted out, we have the following partially-restricted set of 

equations in terms of nodal sub-matrices: 

 

  (4.9) ⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭

1

2 2

F δK11 K12
F δK21 K22

1

 

If we expand this further, we will be able to restrict out all but the rotational DOFs: 
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 1 33 36 1

2 63 66 2

M k k

M k k

θ

θ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⋅ ⋅ ⋅ ⋅

=⎨ ⎬ ⎨⎢⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⎬⎥ ⋅⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎪
⎪⋅

⎪ ⎪ ⎪⎢ ⎥
⋅ ⋅ ⋅ ⋅ ⎩ ⎭⎣ ⎦⎩ ⎭

∑

∑
⎪

 (4.10) 

 

The member contributions to each of these terms are: 

• ; 33 Term 33 of Member 12k =

• ; 36 Term 36 of Member 12k =

• ; 63 Term 63 of Member 12k =

• . 66 Term 66 of Member 12  Term 33 of Member 23k = +

 

• Member 12: 

Looking at equation (4.3): 

 

 
3

3

12

4 4 10Term 33 4 10
1

EI
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (4.11) 

 
3

3

12

2 2 10Term 36 2 10
1

EI
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (4.12) 

 
3

3

12

2 2 10Term 63 2 10
1

EI
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (4.13) 

 
3

3

12

4 4 10Term 66 4 10
1

EI
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (4.14) 

 

• Member 23: 

Again, from equation (4.3): 
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3

3

23

4 4 10Term 33 4 10
1

EI
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (4.15) 

 

Thus the system equation becomes: 

 

 1 13

2 2

4 2
10

2 8
M
M

θ
θ

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨⎢ ⎥

⎣ ⎦ ⎩ ⎭⎩ ⎭

∑
∑ ⎬  (4.16) 

 

Next we must find the net moments applied to each node. There are no directly 

applied nodal moment loads, so the ‘force’ vector is, from equation (3.13): 

 

 { } { }= − FF F  (4.17) 

 

• Member 12 Moments: 

 

 
 

 

2 2
12
1

2 2
12
2

12 1 1 kNm
12 12

12 1 1 kNm
12 12

wLM

wLM

⋅
= = = +

⋅
= − = − = −

 (4.18) 

 

• Member 23 Moments: 
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23
2

23
3

16 1 2 kNm
8 8

16 1 2 kNm
8 8

PLM

PLM

⋅
= = = +

⋅
= − = − = −

 (4.19) 

 

Thus the net nodal loads become: 

 

 { } { } 1

2

1 1
kNm

1 2 2
M
M

+ −⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= − = − = − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬− + −⎩ ⎭ ⎩ ⎭⎩ ⎭

∑
∑FF F  (4.20) 

 

And so equation (4.16) is thus: 

 

 13

2

1 4 2
10

1 2 8
θ
θ

− ⎧ ⎫⎧ ⎫ ⎡ ⎤
=⎨ ⎬ ⎨⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎬  (4.21) 

 

Which is solved to get: 

 

 
( )

1 3
3

2

8 2 1 3 141 1 10  rads
2 4 1 1 1410 4 8 2 2

θ
θ

−− − −⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− − −⋅ − ⋅ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

×  (4.22) 

 

The negative results indicate both rotations are clockwise. 
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Lastly, we must find the member end forces. Since we only need to draw the bending 

moment diagram so we need only consider the terms of the member stiffness matrix 

relating to the moments/rotations (similar to equation (3.9)). Also, we must account 

for the equivalent nodal loads as per equation (3.11): 

• Member 12: 

 

 
12
1 3 3
12
2

1 4 2 3 14 0
10 10  kNm

1 2 4 1 14 12 7
M
M

−+ −⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− − −⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 (4.23) 

 

• Member 23: 

 

 
23
2 3 3
23
3

2 4 2 1 14 12 7
10 10  kNm

2 2 4 0 17 7
M
M

−+ − +⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− −⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 (4.24) 
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4.3 Example 10 –Plane Frame Using Symmetry 

Problem 

For the following frame, determine the rotation of the joints, the displacement under 

the 8 kN point load and the bending moment diagram. Neglect axial deformations. 

Take 3 21 10  kNmEI = × . 

 

 
 

Solution 

Again, the fact that we can neglect axial deformation makes this problem much 

simpler. Since the structure is symmetrical and it is symmetrically loaded, it will not 

sway. Further, because of this symmetry, we can adopt the following model for 

analysis: 
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Notice two things from this model: 

• we have renumber the joints – there is no need to retain the old numbering system; 

• The remaining DOFs are 2θ  and 3 yδ  - we can restrict all other DOFs. Thus in terms 

of nodal sub-matrices we immediately have: 

 

  (4.25) 2

3 3

⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭ ⎩ ⎭

F δK11 K12
F δK21 K22

2

 

And expanding this further, we restrict out all other restrained DOFs: 

 

 2 66 68

3 86 88y y

M k k

F k k

2

3

θ

δ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎢ ⎥⎪⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥⎪⋅ ⋅ ⋅ ⋅

=⎨ ⎬ ⎨⎢⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥⋅ ⋅ ⋅ ⋅
⎪ ⎪ ⎪⎢ ⎥

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎩ ⎭ ⎣ ⎦ ⎩

∑

∑

⎫
⎪
⎪
⎪
⎬⎥
⎪
⎪
⎪
⎭

 (4.26) 

 

The member contributions to each of these terms are: 

• ; 66 Term 66 of Member 12  Term 33 of Member 23k = +

• ; 68 Term 35 of Member 23k =

• ; 86 Term 53 of Member 23k =

• . 66 Term 55 of Member 23k =

 

Transformation of the member stiffness matrices is not required. Member 12 only has 

a rotational DOF and Member 23’s local member coordinate system is parallel to the 

global axis coordinate system. 

 

• Member 12: 
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From equation (4.3): 

 

 
3

3

12

4 4 10Term 66 4 10
1

EI
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (4.27) 

 

• Member 23: 

Again, from equation (4.3): 

 

 
3

3

23

4 4 10Term 33 4 10
1

EI
L

⋅⎛ ⎞= = = ×⎜ ⎟
⎝ ⎠

 (4.28) 

 
3

3
2 2

23

6 6 10Term 35 6 10
1

EI
L

⋅⎛ ⎞= − = − = − ×⎜ ⎟
⎝ ⎠

 (4.29) 

 
3

3
2 2

23

6 6 10Term 53 6 10
1

EI
L

⋅⎛ ⎞= − = − = − ×⎜ ⎟
⎝ ⎠

 (4.30) 

 
3

3
3 3

23

12 12 10Term 55 12 10
1

EI
L

⋅⎛ ⎞= = =⎜ ⎟
⎝ ⎠

×  (4.31) 

 

Thus the system equation becomes: 

 

 22 3

33

8 6
10

6 12 yy

M
F

θ
δ

−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨⎢ ⎥−⎣ ⎦ ⎩ ⎭⎩ ⎭

∑
∑ ⎬  (4.32) 

 

The 4 kN point load is directly applied to node 3 so this causes no difficulty. The 

equivalent nodal loads for the UDL are: 
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2 2
12
1

2 2
12
2

12 1 1 kNm
12 12

12 1 1 kNm
12 12

wLM

wLM

⋅
= = = +

⋅
= − = − = −

 (4.33) 

 

Notice that we do not need to find the vertical reaction forces as there is no sway of 

the frame and we are neglecting axial deformation. 

 

The nodal load vector, from equation (3.13) is thus: 

 

 { } { } { }
0 1
4 0

1
4

− +⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= − = − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬− −⎩ ⎭ ⎩ ⎭ ⎩ ⎭

∑ FF F F  (4.34) 

 

And so equation (4.32) is thus: 

 

 23

3

1 8 6
10

4 6 12 y

θ
δ

+ − ⎧ ⎫⎧ ⎫ ⎡ ⎤
=⎨ ⎬ ⎨⎢ ⎥− −⎩ ⎭ ⎣ ⎦⎩ ⎭

⎬  (4.35) 

 

Which is solved to get: 

 

 
( )( )

2 3
3

3

12 6 1 0.2 rads1 1 10
6 8 4 0.43 m10 8 12 6 6y

θ
δ

−+ −⎧ ⎫ ⎡ ⎤⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ − −⋅ − − −⎡ ⎤ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦

×  (4.36) 
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The negative results indicate the rotation is clockwise and the displacement 

downwards, as may be expected: 

 

 
 

Lastly then we find the bending moments. For member 12 only the terms relating to 

bending moments are relevant. 

• Member 12: 

 

  (4.37) 
12
1 3 3
12
2

1 4 2 0 0.6
10 10  kNm

1 2 4 0.2 1.8
M
M

−+ +⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
= + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− − −⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭⎩ ⎭

 

However, for member 23, the downwards deflection also causes moments and so the 

relevant DOFs are rotation of node i and vertical movement of node j (as calculated 

earlier). It is easier to see this if we write the member equation in full: 

• Member 23: 

 

 
23
2 3

23
3

4 6 0.2
10 10

0.43
2 6

M

M

3−

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎢ ⎥⎪⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥⎪⋅ ⋅ ⋅ − ⋅ −

=⎨ ⎬ ⎨ ⎬⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −
⎪ ⎪ ⎪ ⎪⎢ ⎥

⋅ ⋅ ⋅ − ⋅ ⋅⎣ ⎦ ⎩⎩ ⎭

⎫
⎪
⎪
⎪
×

⎭

 (4.38) 
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Thus: 

 

  (4.39) 
23
2
23
3

1.8
kNm

2.2
M
M

+⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬+⎩ ⎭⎩ ⎭

 

And so the BMD is: 
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4.4 Problems 

1. Determine the bending moment diagram and the rotation of joint 2. Take 
310 10  kNm2EI = ×  and neglect axial deformations. 

 

 
 

2. For the frame of Problem 1, determine the bending moment diagram and the 

rotation and vertical displacement of joint 2 if member 24 has 310 10  kNEA = × . 

Neglect axial deformation in the other members. 
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3. Determine the bending moment diagram, the rotation of joint 2, and the vertical 

displacement under the 80 kN point load. Take 310 10  kNm2EI = ×  and neglect 

axial deformations. 

 

 
 

4. Determine the bending moment diagram, the rotation of joint 2, and the horizontal 

displacements of joints 2 and 3. Take 310 10  kNm2EI = ×  and neglect axial 

deformations. 

 

 
 

Dr. C. Caprani 99



Structural Analysis IV 

5. Appendix 

5.1  Plane Truss Element Stiffness Matrix in Global Coordinates 

Compatibility Conditions 

Firstly we indentify the conditions of compatibility of a truss element nodal 

deflections and the member elongation. We use the following notation for the 

deflections at each node of the truss: 

 

 
 

If we now consider the deflected position of the truss member, we have: 
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Obviously the change in length of the truss will be related to the difference between 

the nodal deflections. Hence, we define the changes in movements such that an 

elongation gives positive changes: 

 

 x jx ix y jy iyδ δ δ δ δ δ∆ = − ∆ = −  

 

Moving the deflected position of node i back to its original location gives: 

 

 
 

Looking more closely at the triangle of displacements at node j, and remembering 

that we are assuming small deflections—which in this case means the deflected 

position of the member is still at a rotation of θ . Hence we have: 
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And so the elongation is given by: 

 

 ( ) ( )
cos sin

cos sin
x y

jx ix jy iy

e δ θ δ θ

δ δ θ δ δ

= ∆ + ∆

= − + − θ
 (5.1) 

 

Now multiply out and re-order to get: 

 

 cos sin cos sinix iy jx jye δ θ δ θ δ θ δ θ= − + − + +  (5.2) 

 

If we define a direction vector, , and a displacement vector, , as: α δ

 

 

cos
sin

cos
sin

ix

iy

jx

jy

δθ
δθ
δθ
δθ

− ⎧ ⎫⎧ ⎫
⎪ ⎪⎪ ⎪−⎪ ⎪ ⎪= ⎨ ⎬ ⎨

⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

α ⎪= ⎬
⎪
⎪

δ  (5.3) 

 

Then, from (5.2) and (5.3), we can say: 
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 te = α δ  (5.4) 

 

Thus we have related the end displacements to the elongation of the member which 

therefore maintain compatibility of displacement. 
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Virtual Work for Element Forces 

Looking at the forces acting on the nodes of the bar element, we have: 

 

 
 

This is a force system in equilibrium—the external nodal loading is in equilibrium 

with the internal bar force, N. If we consider a pattern of compatible displacements 

such as the following: 
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We can apply virtual work to this: 

 

0

E I

W
W W
δ
δ δ

=
=

 

 

And we have: 

 

Set of forces in 

equilibrium  

i i i iF y P eδ δ⋅ = ⋅∑ ∑  

Set of compatible 

displacements   
 

Substituting in our notations for the bar element: 

 

 ix ix iy iy jx jx jy jyeN F F F Fδ δ δ= + + + δ  (5.5) 

 

If we define the force vector, , as: F

 

 

ix

iy

jx

jy

F
F
F
F

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

F  (5.6) 

 

Then we can write (5.5) as: 

 

 t eN=F δ  (5.7) 
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If we use (5.4) we how have: 

 

 t t N=F δ α δ  (5.8) 

 

Post-multiply both sides by , and noting that N is a scalar, gives: 1−δ

 

 t t N=F α   

 N=F α  (5.9) 

 

Expanding this out gives: 

 

 

cos
sin

cos
sin

ix

iy

jx

jy

F N
F N
F N
F N

θ
θ
θ
θ

−⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪=⎨ ⎬ ⎨
⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭⎩ ⎭

⎪
⎬
⎪
⎪

 (5.10) 

 

Which are the equations of equilibrium of the bar element: 

 

 
 

Dr. C. Caprani 106



Structural Analysis IV 

Relating Forces to Displacements 

Lastly, in order to relate the end forces to the element nodal displacements, we note 

from the constitutive law: 

 

 EAN e
L

= ⋅  (5.11) 

 

And so from (5.9) we have: 

 

 EA e
L

=F α  (5.12) 

 

And using equation (5.4) gives: 

 

 tEA
L

=F α α δ  (5.13) 

Hence the term tEA
L

α α  relates force to displacement and is called the stiffness 

matrix, k , which is evaluated by multiplying out terms: 

 

 
[ ]

cos
sin

cos sin cos sin
cos
sin

tEA
L

EA
L

θ
θ

θ θ θ
θ
θ

=

−⎧ ⎫
⎪ ⎪−⎪ ⎪= − −⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

k α α

θ
 (5.14) 

 

And multiplying this out gives: 
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2 2

2 2

2 2

2 2

cos cos sin cos cos sin
cos sin sin cos sin sin

cos cos sin cos cos sin
cos sin sin cos sin sin

EA
L

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ
θ θ θ θ θ θ

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥
− −⎣ ⎦

k  (5.15) 

 

And for clarity, we write out the final equation in matrix form and in full: 

 

 =F kδ  (5.16) 

 

 

2 2

2 2

2 2

2 2

cos cos sin cos cos sin
cos sin sin cos sin sin

cos cos sin cos cos sin
cos sin sin cos sin sin

ix ix

iy iy

jx jx

jy jy

F
F EA
F L
F

δθ θ θ θ θ θ
δθ θ θ θ θ θ
δθ θ θ θ θ θ
δθ θ θ θ θ θ

⎧ ⎫ ⎧− −⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨⎢ ⎥− −⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪− −⎣ ⎦⎩ ⎭ ⎩

⎫
⎪
⎪
⎬
⎪
⎪⎭

 (5.17) 

 

So for example, the stiffness that relates a horizontal force at node j to the horizontal 

displacement at node j is: 

 

 2cosjx j

EAF
L xθ δ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 

And other relationships can be found similarly. 
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5.2 Coordinate Transformations 

Point Transformation 

We consider the transformation of a single point P from one coordinate axis system 

xy to another x’y’: 

 

 
 

From the diagram, observe: 

 

 
'  coordinate of 

'  coordinate of 

OC x P

PC y P

=

=
 (5.18) 

 

Also: 

 

 
coordinate of 

coordinate of 

OB x P

PB y P

=

=
 (5.19) 
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Next we can say: 

 

 OC OA AC= +  (5.20) 

 PC PD CD= −  (5.21) 

 

Introducing the relevant coordinates: 

 

 cos cosOA OA xα α= =  (5.22) 

 sin sinAC BD PB yα α= = =  (5.23) 

 

Thus equation (5.20) becomes: 

 

 ' cos sinOC x x yα α= = +  (5.24) 

 

Next we have: 

 

 cos cosPD PB yα α= =  (5.25) 

 sin sinCD AB OB xα α= = =  (5.26) 

 

Thus equation (5.21) becomes: 

 

 ' cos sinPC y y xα α= = −  (5.27) 

 

Writing equations (5.24) and (5.27) together: 
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 ' cos sinx x yα α= +  (5.28) 

 ' sin cosy x yα α= − +  (5.29) 

 

And now in matrix form gives: 

 

 
' cos sin
' sin cos

x x
y y

α α
α α

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢−⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎥  (5.30) 

 

Often we write: 

 

 
cos
sin

c
s

α
α

≡
≡

 (5.31) 

 

To give: 

 

 
'
'

x c s x
y s c

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎣ ⎦ ⎩ ⎭y

 (5.32) 

 

Lastly, if we generically name the two coordinate systems as q and q’, we then have 

in matrix form: 

 

 { } [ ]{ }Nq' = T q  (5.33) 

 

Where [ ]NT  is the nodal transformation matrix given by: 

 

 
cos sin
sin cosN

α α
α α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

T  (5.34) 
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Force/Displacement Transformation 

Forces and moments can be oriented in the local member axis system or in the global 

structure axis system. In general we will need to transform the forces and 

displacements of both nodes, thus we write: 

 

  (5.35) 
'
'

i N

j jN

⎧ ⎫ ⎧⎡ ⎤
⎨ ⎬ ⎨⎢ ⎥

⎣ ⎦⎩ ⎭ ⎩

F FT 0
=

F F0 T
i ⎫
⎬
⎭

 

And finally we can write: 

 

 { } [ ]{ }'F = T F  (5.36) 

 

Where: 

 

 [ ] N

N

⎡ ⎤
⎢ ⎥
⎣ ⎦

T 0
T =

0 T
 (5.37) 

 

Similarly for deflections: 

 

 { } [ ]{ }'δ = T δ  (5.38) 

 

A very useful property of the transformation matrix (not derived here) is that it is 

orthogonal. This means that its transpose is equal to its inverse: 

 

 [ ] [ ] 1T −
=T T  (5.39) 
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Thus when either a force or displacement is known for the local axis system, it can be 

found in the global axis system as follows: 

 

 { } [ ] { }'TF = T F  (5.40) 

 

 { } [ ] { }'Tδ = T δ  (5.41) 
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Transformations for Plane Truss Element  

For a plane truss member, there will be x and y components of force at each of its 

nodes. Using the transformation for a point, we therefore have: 

 

  (5.42) '

'

cos sin
sin cos

x

y y

F F
F

α α
α α

⎧ ⎫ ⎧ ⎫⎡
=⎨ ⎬ ⎨ ⎬⎢−⎣ ⎦⎩ ⎭ ⎩ ⎭

x

F
⎤
⎥

 

And so for a truss element, we have directly from equation (5.34): 

 

 
cos sin
sin cosN

α α
α α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

T  (5.43) 

 

And so, from equation (5.37),  

 

 [ ]

cos sin 0 0
sin cos 0 0
0 0 cos sin
0 0 sin cos

α α
α α

α α
α α

⎡ ⎤
⎢ ⎥−⎢=
⎢
⎢ ⎥−⎣ ⎦

T ⎥
⎥

⎫
⎪
⎪⎥ ⎬
⎪
⎪⎭

 (5.44) 

 

For clarity, we write the transformation out in full: 

 

  (5.45) 

'

'

'

'

cos sin 0 0
sin cos 0 0
0 0 cos sin
0 0 sin cos

ix ix

iy iy

jx jx

jy jy

F F
F F
F F
F F

α α
α α

α α
α α

⎧ ⎫ ⎧⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨⎢ ⎥⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪−⎣ ⎦⎩ ⎭ ⎩
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Transformations for Plane Frame Element 

Based on the DOF transformation matrix for a plane truss member (in terms of 

forces), we can determine the transformation matrix for a plane frame node quite 

easily: 

 

 
cos sin 0
sin cos 0
0 0 1

e
x x
e

y
e

F F
F yF
M M

α α
α α

⎧ ⎫ ⎡ ⎤⎧ ⎫
⎪ ⎪ ⎪⎢= −⎨ ⎬ ⎨⎢
⎪ ⎪ ⎪⎢ ⎥

⎪⎥
⎬⎥
⎪

⎣ ⎦ ⎩ ⎭⎩ ⎭

 (5.46) 

 

This is because a moment remains a moment in the plane. So for a single node, and 

both nodes, we have, respectively: 

 

 { } [ ]{ }' NF = T F  (5.47) 

 

  (5.48) 
'
'

i N

j jN

⎧ ⎫ ⎧⎡ ⎤
⎨ ⎬ ⎨⎢ ⎥

⎣ ⎦⎩ ⎭ ⎩

F FT 0
=

F F0 T
i ⎫
⎬
⎭

 

Thus, we can now write the final transformation matrix for a plane frame element as: 

 

 

cos sin 0 0 0 0
sin cos 0 0 0 0
0 0 1 0 0
0 0 0 cos sin
0 0 0 sin cos
0 0 0 0 0

α α
α α

α α
α α

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎣ ⎦

T
0
0
0
1

 (5.49) 
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Element Stiffness Matrix Transformation 

Using the general expression for a single element: 

 

  (5.50) e eF = K δe

 

Regardless of member type or the number of dimensions, we will always have some 

coordinate transform from local to global coordinates such that: 

 

  (5.51) eF = TF

  (5.52) eδ = Tδ

 

Hence from equation (5.50) we can write: 

 

  (5.53) eTF = K Tδ

 

And so the force-displacement relationship in the global axis system is: 

 

 1 e−⎡ ⎤⎣ ⎦F = T K T δ  (5.54) 

 

The term in brackets can now be referred to as the element stiffness matrix in global 

coordinates. Thus, using equation (5.39), we write: 

 

  (5.55) e T e
GK = T K TL
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5.3 Past Exam Questions 

Sample Paper 2006/7 

1.  (a) Using the stiffness method, determine the displacement of the joints of the pin-jointed truss shown in Fig. 
Q1(a), under the load as shown. 

(10  marks) 
 

FIG. Q1(a)

100 kN

3

2
1

4

3 m

3 
m

3 m

 
 
 (b) Members 15 and 16 are added to the truss of Fig. 1(a) to form the truss shown in Fig. Q1(b). However, 

member 16 is found to be 15 mm too long and is forced into place. The same load of 100 kN is again to be 
applied. Using the stiffness method, determine the displacement of the joints and the force in member 16. 

(15  marks) 
 Take EA = 2×104 kN and the cross sectional areas of the members as: 
  

Members 12, 13, and 16:   3A; 
Diagonal Members 14 and 15:  3√2A. 

 
 

FIG. Q1(b)

100 kN

3

2
1

4

3 m

3 
m

3 m

5

6
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Semester 1 2006/7 

1.  Using the stiffness method, determine the displacement of the joints and the forces in the members of the pin-
jointed truss shown in Fig. Q1, allowing for: 

 
(i) The 100 kN vertical load as shown, and; 
 
(ii) A lack of fit of member 12, which was found to be 5 mm too short upon arrival at site, and 

which was then forced into place. 
 

 Take EA = 2×104 kN and the cross sectional areas of the members as: 
• Members 12:  3A; 
• Members 13 and 14:  3√2A. 

(25  marks) 
 
 

FIG. Q1

100 kN

1

3 m 3 m

2

3

3 
m

4

 
 

Ans. 50 kN; -75√2 kN; -25√2 kN. 
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Semester 1 Repeat 2006/7 

1.  Using the stiffness method, determine the displacement of the joints and the forces in the members of the pin-
jointed truss shown in Fig. Q1, allowing for: 

 
(ii) The 100 kN vertical load as shown, and; 
 
(ii) A lack of fit of member 12, which was found to be 10√2 mm too short upon arrival at site, and 

which was then forced into place. 
 

 Take EA = 2×104 kN and the cross sectional areas of all members as 3√2A. 
(25  marks) 

FIG. Q1

100 kN

1

3 m 3 m

2

3

3 
m

4

 
Ans. 225√2 kN; -250√2 kN; -25√2 kN. 
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Semester 1 2007/8 

 
QUESTION 1 
 
Using the stiffness method, determine the displacement of the joints and the forces in the members of the pin-jointed 
truss shown in Fig. Q1, allowing for: 
 
(i) The 100 kN load as shown, and; 
 
(ii) A lack of fit of member 13, which was found to be 4 mm too short upon arrival at site, and which was then 

forced into place; 
 
(iii) A temperature rise of 20 ˚C in member 24. 
 
Note: 
Take and the coefficient of thermal expansion 3125 10  kNEA = × -5 -12 10  Cα = × ° . 

(25 marks) 
 
 

FIG. Q1

100 kN1

4 m

2

3

3 
m

4

 
 

Ans. -24 kN; +229.8 kN; -195.2 kN. 
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Semester 1 2007/8 

 
QUESTION 1 
 
Using the stiffness method, for the continuous beam shown in Fig. Q1, do the following: 
 

(i) determine the displacement of the joints; 
 
(ii) draw the bending moment diagram; 

 
(iii) determine the reactions. 

 
 
Note: 
Take . 3 210 10  kNmEI = ×

(25 marks) 
 
 

FIG. Q1

A
B C

30 kN/m

4 m 6 m

D

4 m

100 kN

4EI
4 m

3EI 4EI

 
 

Ans. 98.7 kNm; 102.6 kNm; 60.9 kNm. 
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Summer 2001 
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Summer 2002 
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Summer 2004 
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Summer 2006 
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