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1. Introduction 

1.1 Purpose 

Previously we only used virtual work to analyse structures whose members primarily 

behaved in flexure or in axial forces. Many real structures are comprised of a mixture 

of such members. Cable-stay and suspension bridges area good examples: the deck-

level carries load primarily through bending whilst the cable and pylon elements 

carry load through axial forces mainly. A simple example is a trussed beam: 

 

 

 

Other structures carry load through a mixture of bending, axial force, torsion, etc. Our 

knowledge of virtual work to-date is sufficient to analyse such structures. 
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2. Virtual Work Development 

2.1 The Principle of Virtual Work 

This states that: 

 

A body is in equilibrium if, and only if, the virtual work of all forces acting on 

the body is zero. 

 

In this context, the word ‘virtual’ means ‘having the effect of, but not the actual form 

of, what is specified’. 

 

There are two ways to define virtual work, as follows. 

 

1. Virtual Displacement:  

Virtual work is the work done by the actual forces acting on the body moving 

through a virtual displacement. 

 

2. Virtual Force:  

Virtual work is the work done by a virtual force acting on the body moving 

through the actual displacements. 

 

Virtual Displacements 

A virtual displacement is a displacement that is only imagined to occur: 

 virtual displacements must be small enough such that the force directions are 

maintained. 

 virtual displacements within a body must be geometrically compatible with 

the original structure. That is, geometrical constraints (i.e. supports) and 

member continuity must be maintained.  
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Virtual Forces 

A virtual force is a force imagined to be applied and is then moved through the actual 

deformations of the body, thus causing virtual work. 

 

Virtual forces must form an equilibrium set of their own. 

 

Internal and External Virtual Work 

When a structures deforms, work is done both by the applied loads moving through a 

displacement, as well as by the increase in strain energy in the structure. Thus when 

virtual displacements or forces are causing virtual work, we have: 

 

0

0I E

E I

W

W W

W W


 

 


 


 

 

 where 

 Virtual work is denoted W  and is zero for a body in equilibrium; 

 External virtual work is EW , and; 

 Internal virtual work is IW . 

 

And so the external virtual work must equal the internal virtual work. It is in this 

form that the Principle of Virtual Work finds most use. 
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Application of Virtual Displacements 

For a virtual displacement we have: 

 

0

E I

i i i

W

W W

F y P ei


 

 




   
 

 

In which, for the external virtual work,  represents an externally applied force (or 

moment) and 

iF

iy  its virtual displacement. And for the internal virtual work,  

represents the internal force (or moment) in member i and 

iP

ie  its virtual deformation. 

The summations reflect the fact that all work done must be accounted for.  

 

Remember in the above, each the displacements must be compatible and the forces 

must be in equilibrium, summarized as: 

 

 

 

i i i iF y P e      

Set of forces in 

equilibrium  

Set of compatible 

displacements  
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Application of Virtual Forces 

When virtual forces are applied, we have: 

 

0

E I

i i i

W

W W

y F e Pi


 

 




   
 

 

And again note that we have an equilibrium set of forces and a compatible set of 

displacements: 

 

 

 

In this case the displacements are the real displacements that occur when the structure 

is in equilibrium and the virtual forces are any set of arbitrary forces that are in 

equilibrium. 

 

i i iy F e iP      

Set of compatible 

displacements 

Set of forces in 

equilibrium  
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2.2 Virtual Work for Deflections 

Deflections in Beams and Frames 

For a beam we proceed as: 

1. Write the virtual work equation for bending: 

 

 

0

E I

i i

W

W W

y F M


 

  




  
 

 

2. Place a unit load, F , at the point at which deflection is required; 

3. Find the real bending moment diagram, xM , since the real curvatures are given 

by: 

 

x
x

x

M

EI
   

 

4. Solve for the virtual bending moment diagram (the virtual force equilibrium 

set), M , caused by the virtual unit load. 

5. Solve the virtual work equation: 

 

 
0

1
L

x
x

M
y M

EI
      dx  

 

6. Note that the integration tables can be used for this step. 
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2.3 Virtual Work for Indeterminate Structures 

General Approach 

Using compatibility of displacement, we have: 

 

 

    Final       =    Primary            +                  Reactant 

 

Next, further break up the reactant structure, using linear superposition: 

 

 

Reactant        =    Multiplier     ×    Unit Reactant 

 

We summarize this process as: 

 

 0 1M M M   

 

 M is the force system in the original structure (in this case moments); 

 0M  is the primary structure force system; 

 1M  is the unit reactant structure force system. 

The primary structure can be analysed, as can the unit reactant structure. Thus, the 

only unknown is the multiplier,  , for which we use virtual work to calculate. 
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Finding the Multiplier 

For beams and frames, we have: 

 

 210 1

0 0

0
L L

ii

i i

MM M
dx dx

EI EI

 
      

Thus: 

 

0 1

0
21

0

L
i

i

L
i

i

M M
dx

EI

M
dx

EI
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2.4 Virtual Work for Compound Structures 

Basis 

In the general equation for Virtual Work: 

 

 i i iy F e Pi      

 

We note that the summation on the right hand side is over all forms of real 

displacement and virtual force combinations. For example, if a member is in 

combined bending and axial force, then we must include the work done by both 

effects: 

 

 
     Axial BendingMemberiW e P e P

PL M
P M dx

EA EI

  

 

   

   
 

 

The total Virtual Work done by any member is: 

 

  
Memberi

v

PL M T V
W P M dx T

EA EI GJ GA
V             

 

In which Virtual Work done by axial, bending, torsion, and shear, respectively, is 

accounted for. However, most members primarily act through only one of these stress 

resultants, and so we commonly have only one term per member. A typical example 

is when axial deformation of frame (bending) members is neglected; since the area is 

large the contribution to virtual work is small. 
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At the level of the structure as a whole, we must account for all such sources of 

Virtual Work. For the typical structures we study here, we account for the Virtual 

Work done by axial and flexural members separately: 

 

0

E I

i i i i i

W

W W

y F e P Mi


 

   




      
 

 

In which the first term on the RHS is the internal virtual work done by axial members 

and the second term is that done by flexural members. 

 

Again considering only axial and bending members, if a deflection is sought: 

 

0

1

i i i i

L
x

i x
i

y F e P M

PL M
y P

EA EI

   

 

    

             

 

  M dx
 

 

To solve such an indeterminate structure, we have the contributions to Virtual Work: 

 

 0 1M M M   

 0 1P P P   

 

for the structure as a whole. Hence we have: 
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1

0

0 1 0 1

1

0

210 1 0 1
1 1

0

0

0 1

0

0

E I

i i i i i i

L
x

i x
i

L
x x

i x

i

L
xx x

i i

i i

W

W W

y F e P M

PL M
P M dx

EA EI

P P L M M
P M dx

EA EI

MP L P L M M
P P dx

EA EA EI


 

   

 

  
 

    




    

             

     
     
      

    
          

   

  

 

 

  
0

L

dx
EI

 

Hence the multiplier can be found as: 

 

   

0 1 0 1

0
2 21 1

0

L
i i i

i i

L
i i i

i i

P P L M M
dx

EA EI

P L M
dx

EA EI

 


 

  
 



 

 
 

 

Note the negative sign! 

 

Though these expressions are cumbersome, the ideas and the algebra are both simple. 

 

Integration of Diagrams 

We are often faced with the integration of various diagrams when using virtual work 

to calculate the deflections, etc. As such diagrams only have a limited number of 

shapes, a table of ‘volume’ integrals is used. 
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3. Basic Examples 

3.1 Example 1 

Problem 

For the following structure, find: 

(a) The force in the cable BC and the bending moment diagram; 

(b) The vertical deflection at D. 

Take 38 10 kNm2EI    and 316 10  kNEA   . 
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Solution – Part (a) 

This is a one degree indeterminate structure and so we must release one redundant. 

We could choose many, but the most obvious is the cable, BC. We next analyze the 

primary structure for the actual loads, and the unit virtual force placed in lieu of the 

redundant: 

 

 

 

From the derivation of Virtual Work for indeterminate structures, we have: 

 

 
 210 1 0 1

1 1

0 0

0
L L

xx x
i i

i i

MP L P L M M
P P dx

EA EA EI EI

    
    

          
   

     dx  

 

We evaluate each term separately to simplify the calculations and to minimize 

potential calculation error. 
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Term 1: 

This term is zero since  is zero. 0P

 

Term 2: 

Only member BC contributes to this term and so it is: 

 

 
1

1 1 2 2
1i

i

P L
P

EA EA

 
  

    
 

 EA
 

 

Term 3: 

Here we must integrate the bending moment diagrams. We use the volume integral 

for the portion AD of both diagrams. Thus we multiply a triangle by a trapezoid: 

 

 
     

0 1

0

1 1
40 2 2 4 2

6

400 3

L
x xM M

dx
EI EI

EI

       

 


 

 

Term 4: 

Here we multiply the virtual BMD by itself so it is a triangle by a triangle: 

 

 
     

21

0

1 1 64 3
4 4 4

3

L
xM

dx
EI EI

       
 EI

 

 

With all terms evaluated the Virtual Work equation becomes: 

 

 
2 400 3 64 3

0 0
EA EI EI
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Which gives: 

 

 

400 3
400

2 64 3
6 6

EI
EI

4
EA EI EA

  
 

 

 

Given that 3 38 10 16 10 0.5EI EA     , we have: 

 

 
 

400
5.97

6 0.5 64
  


 

 

Thus there is a tension (positive answer) in the cable of 5.97 kN, giving the BMD as: 

 

 

 

Note that this comes from: 

 

 
  
  

0

0

40 5.97 4 16.1 kN

0 5.97 2 11.9 kN

A

D

M M M

M M M
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Solution – Part (b) 

Recalling that the only requirement on applying virtual forces to calculate real 

displacements is that an equilibrium system results, we can apply a vertical unit force 

at D to the primary structure only: 

 

 

 

The Virtual Work equation useful for deflection is: 

 

 

0

1

i i i i

L
x

Dy i x
i

y F e P M

PL M
P M

EA EI

   

 

    

             

 

  dx
 

 

Since 0P  , we need only calculate the term involving the Virtual Work done by 

the beam bending. This involves the volume integral of the two diagrams: 
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Note that only the portion AD will count as there is no virtual moment on DB. Thus 

we have: 

 

 

 

However, this shape is not easy to work with, given the table to hand. Therefore we 

recall that the real BMD came about as the superposition of two BMD shapes that are 

easier to work with, and so we have: 

 

 

 

A further benefit of this approach is that an equation of deflection in terms of the 

multiplier   is got. This could then be used to determine   for a particular design 

requirement, and in turn this could inform the choice of EI EA  ratio. Thus: 

 

        

0

1 1 1
2 40 2 2 2 2

3 3

160 8

3

L
x

Dy x

M
M dx

EI

EI

EI
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Given 5.97  , we then have: 

 

 
  3

3

160 8 5.97 37.41 37.41
10 4.68 mm

3 8 10Dy EI EI



    


 

 

The positive answer indicates that the deflection is in the direction of the applied 

virtual vertical force and so is downwards as expected. 

 

We can also easily work out the deflection at B, since it is the same as the elongation 

of the cable: 

 

 
   3

3

5.97 2
10 0.75 mm

16 10By

PL

EA
    


 

 

Draw the deflected shape of the structure. 
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3.2 Example 2 

Problem 

For the following structure, find: 

(c) The force in the cable CD and the bending moment diagram; 

(d) Determine the optimum EA of the cable for maximum efficiency of the beam. 

Take 3 28 10  kNmEI    and 348 10  kNEA   . 
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Solution – Part (a) 

Choose the cable CD as the redundant to give: 

 

 

 

The equation of Virtual Work relevant is: 

 

 
 210 1 0 1

1 1

0 0

0
L L

xx x
i i

i i

MP L P L M M
P P dx

EA EA EI EI

    
    

          
   

     dx  

 

We evaluate each term separately: 
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Term 1: 

This term is zero since  is zero. 0P

 

Term 2: 

Only member CD contributes to this term and so it is: 

 

 
1

1 1 2 2
1i

i

P L
P

EA EA

 
  

    
 

 EA
 

 

Term 3: 

Here we must integrate the bending moment diagrams. We use the volume integral 

for each half of the diagram, and multiply by 2, since we have two such halves. 

 

 

 
   

0 1

0

2 5
1 10 2

12

50 3

L
x xM M

dx
EI EI

EI

     

 


 

 

 

 

Term 4: 

Here we multiply the virtual BMD by itself: 

 

 
     

21

0

2 1 4 3
1 1 2

3

L
xM

dx
EI EI

       
 EI

 

 

Thus the Virtual Work equation becomes: 
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2 50 3 4

0 0
3

EA EI EI
        

 

Which gives: 

 

 

50 3
50

2 4 3
6 4

EI
EI

EA EI EA

  
 

 

 

Given that 3 38 10 48 10 0.167EI EA     , we have: 

 

 
 

50
10

6 0.167 4
  


 

 

Thus there is a tension (positive answer) in the cable of 10 kN, giving: 
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As designers, we want to control the flow of forces. In this example we can see that 

by changing the ratio EI EA  we can control the force in the cable, and the resulting 

bending moments. We can plot the cable force and maximum sagging bending 

moment against the stiffness ratio to see the behaviour for different relative 

stiffnesses: 

 

0

2

4

6

8

10

12

14

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Ratio EI/EA

Cable Tension (kN)

Sagging Moment (kNm)
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Solution – Part (b) 

Efficiency of the beam means that the moments are resisted by the smallest possible 

beam. Thus the largest moment anywhere in the beam must be made as small as 

possible. Therefore the hogging and sagging moments should be equal: 

 

 

 

We know that the largest hogging moment will occur at 2L . However, we do not 

know where the largest sagging moment will occur. Lastly, we will consider sagging 

moments positive and hogging moments negative. Consider the portion of the net 

bending moment diagram,  M x , from 0 to 2L : 

 

 

 

The equations of these bending moments are: 
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2P

P
M x x   

   2

2 2W

w wL
M x x   x  

 

Thus: 

 

 
     

2

2 2 2

W PM x M x M x

wL w P
x x x

 

  
 

 

 

 

The moment at 2L  is: 

 

 
2

2 2

2

2
2 2 2 2 2 2

4 8 4

8 4

wL L w L P L
M L

wL wL PL

wL PL

            
     

  

 

 

 

Which is as we expected. The maximum sagging moment between 0 and 2L  is 

found at: 
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max

max

0

0
2 2

2 2

dM x

dx
wL P

wx

L P
x

w



  

 

 

 

Thus the maximum sagging moment has a value: 

 

 

 
2

max

2 2 2

2 2

2 2 2 2 2 2 2 2 2

2

4 4 2 4 4 4 4 4

8 4 8

wL L P w L P P L P
M x

w w

wL PL w L PL P PL P

w w w

wL PL P

w

               
     

 
       

 

  

2

w

 

 

Since we have assigned a sign convention, the sum of the hogging and sagging 

moments should be zero, if we are to achieve the optimum BMD. Thus: 

 

 

   max

2 2 2

2 2

2
2

2 0

0
8 4 8 8 4

0
4 2 8

1
0

8 2 4

M x M L

wL PL P wL PL

w

wL PL P

w

L wL
P P

w

 

  
        




  

                 

 

 

This is a quadratic equation in P and so we solve for P using the usual method: 
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2 2

82 4 8
2 2 2 8

8

2 2

L L L
w L L

P

w

wL

 
    
 

 


 

 

Since the load in the cable must be less than the total amount of load in the beam, that 

is, , we have: P wL

 

  2 2 0.586P wL wL    

 

With this value for P we can determine the hogging and sagging moments: 

 

 

 
 2

2

2

2 2
2

8 4

2 2 3

8

0.0214

wL LwL
M L

wL

wL


 

 
  

 
 

 

 

And: 

 

 

 

 

2 2
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2
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8 4 8

2 22 2 3
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wL PL P
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Lastly, the location of the maximum sagging moment is given by: 

 

 

 

 

max 2 2

2 2

2 2

2 1
2
0.207

L P
x

w

wLL

w
L

L

 


 

 



 

 

or our particular problem,F  5 kN/mw  , 4 mL  , giving: 

 

  0.586 5 4 11.72 kNP     

    2

max 0.0214 5 4 1.71 kNmM x     

 

Thus, as we expected, , the value obtained from Part (a) of the problem. 

ow since, we know P we now also know the required value of the multiplier, 

10 kNP 

 

N  . 

 

Hence, we write the virtual work equations again, but this time keeping Term 2 in 

terms of L, since that is what we wish to solve for: 

 

50
11.72

6 4

1 50
4 0.04

6 11.72

EI
EA

EI

EA

  


  4    
 

 

 

ivingG  3 38 10 0.044 180.3 10  kNEA     . This is 3.75 times the original cable area 

f extra material just to change the c– a lot o able force by 17%. 
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3.3 Example 3 

For the following structure: 

1. Determine the tension in the cable AB; 

2. Draw the bending moment diagram; 

3. Determine the vertical deflection at D with and without the cable AB. 

Take 3 2120 10  kNmEI    and 360 10  kNEA   . 

 

 

 

As is usual, we choose the cable to be the redundant member and split the frame up 

as follows: 

 

     

Primary Structure    Redundant Structure 
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We must examine the BMDs carefully, and identify expressions for the moments 

owever, since we will be using virtual work and integrating one 

e immediately see that we are only interested in the 

ill use the anti-clockwise angle from 

ry BMD 

rawing the BMD and identify the relevant distances: 

 

around the arch. H

diagram against another, w

portion of the structure CB. Further, we w

vertical as the basis for our integration. 

 

Prima

D

 

 

Hence the expression for 0M  is: 

 

    0 20 10 2sin 20 1 sinM       

 

 

 

 



Structural Analysis IV 

Dr. C. Caprani 34

Reactant BMD 

This calculation is slightly easier: 

 

 

 

    1 1 2 2cos 2 1 cosM        

 

Virtual Work Equation 

As before, we have the equation: 

 

 210 1 0 1
1 1

0 0

0
L L

xx x
i i

i i

MP L P L M M
P P dx dx

EA EA EI EI

    
    

          
   

      

 

Term 1 is zero since there are no axial forces in the primary structure. We take each 

ince only member AB has axial force: 

other term in turn. 

 

Term 2 

S

 

 
 2
1 2 2

Term 2
EA EA
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Term 3 

Since we want to integrate around the member – an integrand  - but only have the 

oment expressed according to 

ds

m  , we mu its by 

substituting: 

 

st change the integration lim

 2ds R d d     

 

Hence: 

 

 

   

  

 

20 1

0 0

2

0

2

0

1
2 1 cos 20 1 sin 2

80
1 cos 1 sin

80
1 sin cos cos sin

L
x xM M

dx d
EI EI

d
EI

d
EI







   

  

   


       

   

    

 





 





e appendix of integrals to get each of the 

terms, which then give: 

 

 

 

To integrate this expression we refer to th

 
 

20 1

00

80 1
cos sin cos2

4
x x dx
EI EI

         

80 1 1
0 1 1 0 1 0

2 4 4

80 1 1
1 1

4 4

80 1

2

L M M

EI

EI









  

 

2EI
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Term 4 

Proceeding similarly to Term 3, we have: 

 

 

     

 

21 2

0 0

2
2

0

1
2 1 cos 2 1 cos 2

8
1 2cos cos

L
xM

dx d
EI EI

d
EI






  

  

        

  

 


 

 

Again we refer to the integrals appendix, and so for Term 4 we then have: 

 

 

   

 

21 2
2

0 0

2

0

8
1 2cos cos

8 1
2sin sin 2

2 4

8 1
2 0 0

2 4 4
0 0

4

L
xM

dx d
EI EI

EI

EI

EI






  

  

 

  

         

8 3 7

                

  
 

 

 

olution 

Substituting the calculated values into the virtual work equation gives: 

 

 

 

S

2 80 1 8 3 7
0 0

2 4EA EI EI

            
  

 


 

And so: 
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80 1
2

2 8 3 7
4

EI 

EA EI





   
 

   
 

 

 

implifying: 

 

S

20 20

3 7
EI
EA







 
 

In this problem,

 

 2EI EA   and so: 

 

20 20
9.68 kN

3 5





 


 

 

We can examine the effect of different ratios of EI EA  on the structure from our 

algebraic solution for  . We show this, as well as a point representing the solution 

for this particular EI EA  ratio on the following graph: 
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As can be seen, by choosing a stiffer frame member (increasing EI) or by reducing 

the area of the cable, we can reduce the force in the cable (which is just 1  ). 

ct of increasing the moment at A, for example: However this will have the effe
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Deflections and shear would also be affected. 

D. 

 

 

 

Draw the final BMD and determine the deflection at 
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3.4 Example 4 

1. draw the bending moment diagram; 

2. Find the vertical deflection at E. 

Take 

Problem 

For the following structure: 

3 2120 10  kNmEI    and 360 10  kNEA   . 
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Solution 

To begin we choose the cable BF as the obvious redundant, yielding: 

 

 

 

Virtual Work Equation 

The Virtual Work equation is as before: 

 

 210 1 0 1
1 1

0 0

0
L L

xx x
i i

i i

MP L P L M M
P P dx dx

EA EA EI EI

    
    

          
   

      

 

Term 1 is zero since there are no axial forces in the primary structure. As we have 

done previously, we take each other term in turn. 

 

Term 2 
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Though member AB has axial force, it is primarily a flexural member and so we only 

take account of the axial force in the cable BF: 

 

 

1
1 1 2 2 2 2

1i

i

P L
P

EA EA

 
        

   
  

EA

 

Term 3 

Since only the portion AB has moment on both diagrams, it is the only section that 

requires integration here. Thus: 

 

    
0 1

0

1 1 220 2
200 2 2

2

L
x xM M

dx
EI EI EI

      
  

 

Term 3 

Similar to Term 3, we have: 

 

 
     

21

0

1 1 4 3
2 2 2

3

L
xM

dx
EI EI

       
  

EI

ubstituting the calculated values into the virtual work equation gives: 

 

 

Solution 

S

2 2 220 2 4 3
0 0

EA EI E
        

I

 

Thus: 
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220 2

2 2 4 3

EI

EA EI

 

 

nd so: 

 


A

 

220 2
4

2 2
3

EI
EA

 


 

ince: 

 

S

 

 
3

3

120 10
2

60 10

EI

EA


 


 

 

We have: 

 

 
220 2

40.46
4

2 2 2
3

   


 

 

Thus the force in the cable BF is 40.46 kN tension, as assumed. 

he bending moment diagram follows from superposition of the two previous 

diagrams:  

 

 

T
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To find the vertical deflection at E, we must apply a unit vertical load at E. We will 

apply a downwards load since we think the deflection is downwards. Therefore we 

hould get a positive result to confirm our expectation. 

e need not apply the unit vertical force to the whole structure, as it is sufficient to 

apply it to a statically determinate sub-structure. Thus we apply the force as follows: 

 

s

 

W
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For the deflection, we have the following equation: 

 

 

0

1

i i i i

L
x

Ey i x
i

y F e P M

PL M
P M

EA EI

   

 

    

             

 

 
 

dx

 

However, since 0P  , we only need calculate the second term: 

 

 

 

For AB we have: 

 

    1 1 1371.2
200 142.8 4 2

2

B
x

x

A

M
M dx

EI EI
              

EI

 

For BC we have: 

 

    1 1600
200 4 2

C
x

x

B

M
M dx

EI EI
          

EI
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For CD, we have the following equations for the bending moments: 

 

 

 

    100 2sin

200sin

M  





    

    2 1 2sin

2 2sin

M  


 

 
 

 

Also note that we want to integrate around the member – an integrand  - but only 

have the moment expressed according to 

ds

 , we must change the integration limits by 

substituting: 

2

 

 ds R d d     

 

Thus we have: 

 

 

  

 

2

0

2
2

0

2 2
2

0 0

1
200sin 2 2sin 2

800
sin sin

800
sin sin

D
x

x

C

M
M dx d

EI EI

d
EI

d d
EI
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Taking each term in turn: 

 

    
2

2

0
0

sin cos 0 1 1d


          

 

    
22

2 22 2

00

1 1 1
sin sin 1 0 0

2 4 4 4 4 4
d

                            
1

 

Thus: 

 

 

800 1
1x dx

    
200 600

4

D
x

C

M
M

EI EI EI

          

 

Thus: 

 

 
1371.2 1600 200 600 4200

Ey EI EI EI EI

 
      

 

Thus we get a downwards deflection as expected. Also, since 3 2120 10  kNmEI   , 

 

we have: 

 

3

4200
35 mm

120 10Ey  
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3.5 Problems 

Problem 1 

or the following structure, find the BMD and the vertical deflection at D. Take F
3 28 10 kNmEI    and 316 10  kNEA   . 

(Ans. 7.8   for BC, ) 1.93 mmBy  

 

 

 

Problem 2 

BMD and the vertical deflection at C. Take For the following structure, find the 
3 28 10 kNmEI    and 316 10  kNEA   . 

(Ans. 25.7   for BD ) 

 

, 25 mmCv  
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Problem 3 

For the following structure, find the 
3 2

BMD and the horizontal deflection at C. Take 

8 10 kNmEI    and 316 10  kNEA   . 

(Ans. 47.8   for BD, 44.8 mmCx   ) 

 

 

Problem 4 

For the following structure, find the BMD and the vertical deflection at B. Take P = 

20 kN, 3 28 10 kNmEI    and 316 10  kNEA   . 

(Ans. 14.8   for CD ) 

 

, 14.7 mmBy  
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Problem 5 

For the following structure, find the BMD and the vertical deflection at D. Take 
3 250 10 kNmEI    and 320 10  kNEA   . 

(Ans. 100.5   for BC, )  55.6 mmCy  

 

 

 

Problem 6 

Analyze the following structure and determine the BMD and the vertical deflection at 

, takeD. For ABCD  210 kN/mmE  , 4 212 10  mmA    and 8 436 10  mmI   , and for 

AEBFC take 2200 kN/mmE   and 3 22 10  mmA   . 

s. 109.3(An    for BF, ) 

 

54.4 mmCy  
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em 7 

 following structure. For all members, take 

Probl

Analyze the 210 kN/mmE  , for ABC,  
4 26 10  mmA    and 7 4125 10  mmI   ; for all other members 21000 mmA  . 

(Ans. 72.5   for DE) 
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4. Advanced: Ring Beam Examples 

4.1 Example 1 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the deflection at A due to the point load, P, at A is: 

 

 
3 3 3 8

4 4Ay

PR PR

EI GJ
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Solution 

The point load will cause both bending and torsion in the beam member. Therefore 

e accounted for in the deflection calculations. Shear effects are 

P, from the section of consideration, which we locate by the angle 

both effects must b

ignored. 

 

Drawing a plan view of the structure, we can identify the perpendicular distance of 

the force,   from 

the y-axis: 

 

 

 

The bending moment at C is P times the perpendicular distance AC , called m The 

torsion at C is the force times the transverse perpendicular distance 

. 

CD , called t. 

Using the triangle ODA, we have: 

 



Structural Analysis IV 

Dr. C. Caprani 53

 
sin sin

cos cos

R
OD

OD R

m
m R

R

 

   
 

 

  

The distance CD , or t, is R OD , thus: 

 

 

 
cos

1 cos

t R OD

R R

R




 

 

 

 

 

Thus the bending moment at point C is: 

 

 
 

sin

M Pm

PR







 (4.1) 

 

The torsion at C is: 

 

 
 

 1 cos

T Pt

PR







 
 (4.2) 

 

Using virtual work, we have: 

 

 
0

E I

Ay

W

W W

M T
F M ds T ds

EI GJ


 

   



     

 (4.3) 
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This equation represents the virtual work done by the application of a virtual force, 

F , in the vertical direction at A, with its internal equilibrium virtual moments and 

torques, M  and T  and so is the equilibrium system. The compatible 

formations of the structure, externally at displacements system is that of the actual de

, and internally by the curvatures and twists, A M EI  and T GJ . 

 

Taking the virtual force, 1F  , and since it is applied at the same location and 

direction as the actual force P, we have, from equations (4.1) and (4.2): 

 

 

  sinM R    (4.4) 

 

    1 cosT R     (4.5) 

 

hus, the virtual work equation, (4.3), becomes: T

 

 

      
2 2

0 0

1
1Ay M 1

1 1
sin sin 1 cos 1 cos

M ds T T ds
EI GJ

PR R Rd PR R Rd
EI GJ

 

 

     

 

         



 
 (4.6) 

 

 which we have related the curve distance, , to the arc distance, 

  

In ds ds Rd , which 

e angle rather than along the curve. Multiplying out: allows us to integrate round th

 

  
2 23 3

2
d2

0 0

sin 1 cosAy

PR PR
d

EI GJ

 

      

  

onsidering the first term, from the integrals’ appendix, we have: 

 

  (4.7) 

C
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22
2

00

1
sin sin 2

2 4

1
0 0 0

4 4

d
 





 
  

4

   

          





 (4.8) 

 

The second term is: 

 

 

   
2 2

2

0 0

2 2 2
2

0 0

1 cos 1 2cos c

1 2 cos cos

d

d d d

 

  

   2os d 

0

    

   

  

 

 
 (4.9) 

 



 

Thus, from the integrals in the appendix: 

 

     

       

22
2 22

0 0
00

1
1 cos 2 sin sin 2

2 4

1
0 2 1 0 0 0 0

2 4 4

2
2 4
3 8 


4

d


      

 

 

       

                            

  



 (4.10) 

ubstituting these results back into equation (4.7) gives the desir

 

 

S ed result: 

 
3 3 3 8

4 4Ay

PR PR

EI GJ
     

 
 (4.11) 
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4.2 Example 2 

roblem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the deflection at A due to the uniformly distributed 

w, shown is: 

P

load, 

 

 
 24 4 21

2 8Ay

wR wR

EI GJ
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Solution 

The UDL will cause both bending and torsion in the beam member and both effects 

must be accounted for. Again, shear effects are ignored. 

 

 

 

Drawing a plan view of the structure, we must identify the moment and torsion at 

ome point C, as defined by the angle s   from the y-axis, caused by the elemental 

ad at E, located at lo   from the y-axis. The load is given by: 

 

 

Force UDL length

w ds

w R d

 
 
 

 (4.12) 
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The bending moment at C is the load at E times the perpendicular distance DE , 

verse perpendicular distance labelled m. The torsion at C is the force times the trans

CD , labelled t. Using the triangle ODE, we have: 

 

 
   

   

sin sin

cos cos

m
m R

R
OD

OD R
R

   

  

    

    
 



 

The distance t is thus: 

 

  
 

cos

1 cos

t R OD

R R

R

 

 

 

  

    

 

 

The differential bending moment at point C, caused by the elemental load at E is 

thus: 

 

 

 
 
   

 

Force Distance

sin

sin

dM

wRd m

wRd R

wR d





2

  

  

 

 

   

 

 

  

tegrating to find the total moment at C caused by the UDL from A to C around the 

angle 0 to 

In

  gives: 
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2

0

2

sin

sin

wR d

wR

 



 




0

M dM

d

 

  

  

 










 

 

  

 

In this integral   is a constant and only   is considered a variable. Using the identity 

om the integral table gives: 

 

fr

 
   

 

2

0

2

cos

cos0 cos

M wR

wR

 


  






   

   
  

And so: 

 

 

 

   2 1 cosM wR    (4.13) 

 

 

Along similar lines, the torsion at C caused by the load at E is: 

 

   
    

 2

1 cos

1 cos

dT wRd t

wRd R

wR d

 

  

  

 

    

    

  

 

And integrating for the total torsion at C: 
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2

0

2

0

2

1 cos

1 cos

1 cos

T dT

wR d

wR d

wR d d

 



 



   

 

  

  

0 0 

   









 



    

    

 

 
   







 

 

 

 

Using the integral identity for  cos    gives: 

 

 
      

  

2

0 0

2

sin

sin 0 sin

T wR

wR

  

 
   

 



 
     

  
 

 

And so the total torsion at C is: 

 

    2 sinT wR     (4.14) 

o determine the deflection at A, we apply a virtual force, 

 

T F , in the vertical 

direction at A. Along with its internal equilibrium virtual moments and torques, M  

and T  and this set forms the equilibrium system. The co

system is that of the actual deformations of the structure, externally at A  

te y by the curvatures and twists,

mpatible displacements 

, and

in rnall  M EI  and T GJ . Therefore, using virtual

 

 

work, we have: 

 

0

E I

Ay

W

W W

M T
F M ds T ds

EI GJ


 

   




     

 (4.15) 
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Taking the virtual force, 1F  , and using the equation for moment and torque at 

any angle   from Exam

 

ple 1, we have: 

   sinM R    (4.16) 

 

    1 cosT R     (4.17) 

, (4.15), using equations (4.13) and (4.14), becomes: 

 

 

Thus, the virtual work equation

 

   

   

2
2

0

2
2

0

1 1
1

1
1 cos sin

1
sin 1 cos

Ay M M ds T T ds
EI GJ

wR R Rd
EI

wR R Rd
GJ





  

  

   

    

   

     

 





 (4.18) 

 which we have related the curve distance,  



 

In to the arc distance, ds Rdds ,   

allowing us to integrate round the angle rather than along the curve. Multiplying out: 

 

 
 

 

24

0

24

0

sin sin cos

sin cos cos sin

Ay

wR
d

EI

wR
d

GJ





    

      

 

   




 (4.19) 

 

Using the respective integrals from the appendix yields: 
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24

cos s2
4Ay

wR

EI



     0

24 2

4

4 2

4 2

1
co

1
cos sin cos cos2

2

1 1
0 1

4 4

1
0 1 0 1 0 1 0 1

8 2 4 4

2

1 1

8 2 4 4

wR

GJ

wR

EI

wR

GJ

EI

wR

GJ


     

 

 

 

 
     



                 
                   

     

 


   



 

   

Writing the second term as a common fraction: 

 

0
4 

4 1wR    

1  

 

 
4 4 21 4

2 8Ay

wR wR

EI GJ

 
 4 

    
 

  

 

And then factorising, gives the required deflection at A: 

 

 
 224 4 21

2 8Ay

wR wR

EI GJ





     (4.20) 
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4.3 Example 3 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the vertical reaction at A due to the uniformly 

distributed load, w, shown is: 

 

 
 
 

2
4 2

2 2 3 8AV wR
 

 

  
  

   
  

 

herew  
GJ

EI
  . 
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Solution 

This problem can be solved using two apparently different methods, but which are 

equivalent. Indeed, examining how they are equivalent leads to insights that make 

more difficult problems easier, as we shall see in subsequent problems. For both 

the results obtained thus far: 

 Deflection at A due to UDL: 

 

 

approaches we will make use of 



 24 4 21

2 8Ay

wR wR

EI GJ





     (4.21) 

flectio t A due to point load at A: 

 

 

 De n a

 
3 3 3 8

4 4Ay

PR PR

EI GJ

       
 

 (4.22) 

 

Using Compatibility of Displacement 

The basic approach, which does not require virtual work, is to use compatibility of 

displacement in conjunction with superposition. If we imagine the support at A 

removed, we will have a downwards deflection at A caused by the UDL, which 

equation (4.21) gives us as: 

 

 
 24 4

0 21

2 8Ay

wR wR

EI GJ





     (4.23) 

 

As illustrated in the following diagram. 
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Since in the original structure we will have a support at A we know there is actually 

no displacement at A. The vertical reaction associated with the support at A, called V, 

must therefore be such that it causes an exactly equal and opposite deflection, V

Ay , to 

0that of the UDL, Ay , so that we are left with no deflection at A: 

 

 
0 0V

Ay Ay    (4.24) 

f course we don’t yet know the value of V, but from equation (4.22), we know the 

 lieu of V: 

 

 

O

deflection caused by a unit load placed in

 
3 3

1 1 1 3

4 4Ay

R R

EI GJ

  8       
 

 (4.25) 
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This is shown in the following diagram: 

 

 

Using superposition, we know that the deflection caused by the reaction, V, is V times 

 

 

the deflection caused by a unit load: 

 

 1V

Ay AV y    (4.26) 

 

Thus equation (4.24) becomes: 

 

 0 1 0Ay AyV     (4.27) 

Which we can solve for V: 
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0

1

Ay

Ay

V



   (4.28) 

 

If we take downwards deflections to be positive, we then have, from equations(4.23),  

(4.25), and (4.28): 

 

 

 24 4

3 3

21
2 8

1 1 3
4 4

wR wR
EI GJ

V
R R

EI GJ



 

 
    

  
            

8
 (4.29) 

 

The two negative signs cancel, leaving us with a positive value for V indicating that it 

is in the same direction as the unit load, and so is upwards as expected. Introducing 

GJ

EI
   and doing some algebra on equation (4.29) gives: 

 

 

 

 

   

 
 

12

12
1 1

2 8
wR






12

2

21 1 1 1 1 3 8

2 8 4 4

2 1 3 8

4 4

4 2 3 8

8 4

4 2 8

2 2 3 8

V wR
EI EI EI EI

wR

  
 

 


   
 

  
 





 

8
wR



                 

          
     

       
    

     

 

uired reaction at A as: 

 
  



 
 

 

And so we finally have the req
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2
4 2

2 2 3 8 
AV wR

 


  
    

 (4.30) 

 

sing Virtual Work 

stem: the external and internal virtual forces corresponding to a 

unit virtual force applied in lieu of the required reaction; 

 Compatible system: the real external and internal displacements of the original 

structure subject to the real applied loads. 

Thus the virtual work equations are: 

 

U

To calculate the reaction at A using virtual work, we use the following: 

 Equilibrium sy

 W W

F M ds T ds

0

E I

Ay

W
 

     




     
 (4.31) 

 

t this point we introduce some points: 

 The real external deflection at A is zero: 

A

0Ay  ; 

 The virtual force, 1F  ; 

 The real curvatures can be expressed using the real bending moments, 
M

EI
  ; 

 The real twists are expressed from the torque, 
T

GJ
  . 

These combine to give, from equation (4.31): 

 

 
0 0

0 1
L LM T

M ds T ds
EI GJ

                 (4.32) 
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Next, we use superposition to express the real internal ‘forces’ as those due to the real 

us a multiplier tim

irtual load applied in lieu of the reaction: 

loading applied to the primary structure pl es those due to the unit 

v

 

 0 1 0 1M M M T T T      (4.33) 

 

Notice that 1M M   and 1T T  , but they are still written with separate notation to 

keep the ideas clear. Thus equation (4.32) becomes: 

 

 

   0 1

0
L M M

M ds
0 1

0 0

0 1 0 1

0 0 0

0

L

L L L L

T T
T ds

EI GJ

M M T T

0

M ds M ds T ds T ds
EI EI GJ




     

 
  

      

           

 (4.34) 

 

nd so finally: 

GJ




 
   

A

 

 

0 0L LM T

0 0

1 1L L

0 0

M ds T ds
EI GJ

M T
M ds T ds 




    
 (4.35) 

 

 (4.35) and (4.28). From 

equation (4.35) is the deflection at A of 

e primary structure subject to the real loads. Further, from equation (4.15), the 

denominator in equation (4.35) is the deflection at A due to a unit (virtual) load at A. 

eglecting signs, and generalizing somewhat, we can arrive at an ‘empirical’ 

equation for the calculation of redundants: 

 

EI GJ 

 


   
   

 

At this point we must note the similarity between equations

equation (4.3), it is clear that the numerator in 

th

 

N
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of primary structure along due to actual loads

line of action of redundant due to unit redundant





 



 

  (4.36) 

sing this form we will quickly be able to determine the solutions to further ring-

eam problems. 

 for

U

b

 

The solution    fo directly

 The denominator is determined as per Example 2, with 

llows  from the previous examples: 

 The numerator is determined as per Example 1; 

 1P  . 

Of course, these two steps give the results of equations (4.23) and (4.25) which were 

sed in equation (4.28) to obtain equation (4.29), and leading to the solution

(4.30). 

 

rom this it can be seen that compatibility of displacement and virtual work are 

 of looking at the problem. Also it is apparent that the virtual work 

amework inherently calculates the displacements required in a compatibility 

analysis. Lastly, equation (4.36) provides a means for quickly calculating the 

dundant for other arrangements of the structure from the e

be seen in the next example. 

 

u , equation 

F

equivalent ways

fr

re xisting solutions, as will 

 



Structural Analysis IV 

Dr. C. Caprani 71

4.4 Example 4 

roblem 

ectively and the cable has axial rigidity EA, show that the tension in 

e cable due to the uniformly distributed load, w, shown is: 

P

For the structure shown, the quarter-circle beam has flexural and torsional rigidities 

of EI and GJ resp

th

 

    
1

2
4 2 2 2 3

3
8 8

L
T wR    

R



 

          
 

 

where 
GJ

EI
   and 

EA

EI
  . 
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Solution 

For this solution, we will use the insights gained from Example 3, in particular 

equation (4.36). We will then verify this approach using the usual application of 

virtual work. We will be choosing the cable as the redundant throughout. 

 

Empirical Form 

Repeating our ‘empirical’ equation here: 

 

 
of primary structure along due to actual loads

 
line of action of redundant due to unit redundant





 


 (4.37) 

 

We see that we already know the numerator: the deflection at A in the primary 

structure, along the line of the redundant (vertical, since the cable is vertical), due to 

the actual loads on the structure is just the deflection of Example 1: 

 

 
 24 4

0 21

2 8Ay

wR wR

EI GJ





     (4.38) 

This is shown below: 
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Next we need to identify the deflection of the primary structure due to a unit 

redundant, as shown below: 

 

 

 

ponents that make up this deflection are: 

 Deflection of curved beam caused by unit load (bending and torsion); 

cable AC caused by the unit tension. 

he first of these is simply the unit deflection of Example 3, equation (4.25): 

 

 

The com



 Deflection of the 

T

 
3 3

1 1 1 3
beam

4 4Ay

R R

EI GJ

  8       
 

 (4.39) 

 

The second of these is not intuitive, but does feature in the virtual work equations, as 

we shall see. The elongation of the cable due to a unit tension is: 
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  1 1
cableAy

L

EA
 

  (4.40) 

hus the total deflection along the line of the redundant, of the primary structure, due 

to a unit redundant is: 

 

 

 

T

   1 1 1

3 3

beam cable

1 1 3 8

4 4

Ay Ay Ay

1R R L

EI GJ

  

 

 

       
  EA

  (4.41) 

 

Both sets of deflections (equations (4.39) and (4.41)) are figuratively summarized as: 

 

 

 

nd by making A 0 1

Ay AT y  , where T is the tension in the cable, we obtain our 

(4.37), (4.38) and 

 we have: 

 

compatibility equation for the redundant. Thus, from equations 

(4.41)
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 2
24 4

3 3

1
2 8

1 1 3 8 1

wR wR
EI GJ

T

4 4
R R L

EI GJ EA
      

 



 


  

  
      

 (4.42) 

Setting 




GJ

EI
   and 

EA

EI
  , and performing some algebra gives: 

 

 

 

   

   

12

3

3

1

2
3

21 1 1 1 1 3 8

2 8 4 4

8 4

82 2 3 84 2

8 8

L
T wR

12
4 2 3 8

EI EI EI EI R EI

wR
R

L
R

wR

  
  

  

   
 





 

L   


                

    
    

                

 (4.43) 

 

Which finally gives the required tension as: 

 

 

     

   
1

2

3
4 2 2 2 3 8 8

L
T wR

R

   



            

 (4.44) 

 

Comparing this result to the previous result, equation (4.30), for a pinned support at 

, we can see that the only difference is the term related to the cable: A
3

8
L

R



 . Thus 

the ‘reaction’ (or tension in the cable) at A depends on the relative stiffnesses of the 

beam and cable (through the 
3R

EI
,  

3R

GJ
 and 

L

EA
 terms inherent through   and  ).  

This dependence on relative stiffness is to be expected. 
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Formal Virtual Work Approach 

Without the use of the insight that equation (4.37) gives, the more formal application 

me result. To calculate the tension in the 

cable using virtual work, we use the following: 

 Equilibrium system: the external and internal virtual forces corresponding to a 

 Compatible system: the real external and internal displacements of the original 

structure subject to the real applied loads. 

Thus the virtual work equations are: 

 

 

P

of virtual work will, of course, yield the sa



unit virtual force applied in lieu of the redundant; 

0

E I

Ay

W

W W

F M ds T ds e


 

      




       
 (4.45) 

 

In this equation we have accounted for all the major sources of displacement (and 

us virtual work). At this point we acknowledge: 

d, only an internal tension, thus

th

 There is no external virtual force applie  0F  ; 

 The real curvatures and twists are expressed using the real bending moments and 

torques as 



M

EI
   and 

T

GJ
   respectively; 

 The elongation of the cable is the only source of axial displacement and is 

written in terms of the real tension in the cable, P, as 
PL

e
EA

 . 

These combine to give, from equation (4.45): 

 

 
0 0

0Ay

M T PLL L

M d
I

s T ds P
E GJ EA

                   (4. ) 

 


46

s was done in Example 3, using superposition, we write: A
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 0 1 0 1 0 1M M M T T T P P P         (4.47) 

 

However, we know that there is no tension in the cable in the primary structure, since 

it is the cable that is the redundant and is thus removed, hence 0 0P  . Using this and 

equation (4.47) in equation (4.46) gives: 

 

 
 

   0 1 0L LM M T 1 1

0

T P L

0

0 M ds
EI

T ds P
GJ EA

 
  


    

  
  (4.48) 

 

   
  

  


 

Hence: 

 

0 1

0 0

0 1

0 0

L L

1

0
L LM M

M ds M ds
EI EI

T T
T ds T ds

GJ GJ

P L
P

EA

And so finally: 

       

 

 

         (4.49) 

   

 

0 0

0 0

1 1L LM T 1

0 0

L LM T

P L

M ds T ds
EI GJ

M ds T ds P
EI GJ EA


 

  

 

 


   
 

 (4.50) 

 

quation (4.50) matches equation (4.35) except for the term rel

hus the other four terms are evaluated exactly as per Example 3. The cable term, 

   
 
 


  

E ating to the cable. 

T
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1P L
P

EA
 , is easily found once it is recognized that 1 1P P   as was the case for 

e moment and torsion in Example 3. With all the terms thus evaluated, equation 

e solution, but without the added insight of 

e source of each of the terms in equation (4.50) represented by equation (4.37). 

 

th

(4.50) becomes the same as equation (4.42) and the solution progresses as before. 

 

The virtual work approach yields the sam

th
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4.5 Ex

 torsional rigidity of GJ; 

ample 5 

Problem 

For the structure shown, the quarter-circle beam has the properties: 



 flexural rigidity about the local y-y axis YEI ; 

 flexural rigidity about the local z-z axis ZEI . 

The cable has axial rigidity EA. Show that the tension in the cable due to the 

uniformly distributed load, w, shown is: 

 

 
   

12

2

4 2 1 1 8 2
1 3 8

2
T wR

R

 
 

  


             

     
 

 

where 
Y

GJ

EI
  , 

Y

EA

EI
   and Z

Y

EI

EI
  . 
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Solution 

We will carry out this solution using both the empirical and virtual work approaches 

as was done for Example 4. However, it is in this example that the empirical 

approach will lead to savings in effort over the virtual work approach, as will be seen. 

 

Empirical Form 

Repeating our empirical equation: 

 

 
of primary structure along due to actual loads

 
line of action of redundant due to unit redundant





 


 (4.51) 

 

We first examine the numerator with the following y-z axis elevation of the primary 

structure loaded with the actual loads: 

 

 

 

Noting that it is the deflection along the line of the redundant that is of interest, we 

can draw the following: 

 



Structural Analysis IV 

Dr. C. Caprani 83

 

 

The deflection Az , which is the distance 'AA  is known from Example 2 to be: 

 

 

 24 4 21

2 8Az

wR wR

EI GJ





     (4.52) 

 

It is the deflection ''AA  that is of interest here. Since the triangle A-A’-A’’ is a 1-1-

2  triangle, we have: 

 

 , 4
2
Az

A 

   (4.53) 

 

nd so the numerator is thus: A

 

 
 24 4

0 2

2 2 8 2
A

wR wR

GJEI





    (4.54) 
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To determine the denominator of equation (4.51) we must apply a unit load in lieu of 

the redundant (the cable) and determine the deflection in the direction of the cable.  

 

Firstly we will consider the beam. We can determine the deflection in the z- and y-

axes separately and combine, by examining the deflections that the components of the 

unit load cause: 

 

 

 

To find the deflection that a force of 
1

2
 causes in the z- and y-axes directions, we 

will instead find the deflections that unit loads cause in these directions, and then 

ivide byd  2 .  

 

ince we are now calculating deflections in two orthog

must consider the different flexural rigidities the beam will have in these two 

S onal planes of bending, we 
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directions: YEI  for the horizontal plane of bending (vertical loads), and ZEI  for loads 

in the x-y plane, as shown in the figure: 

 

 

 

First, consider the deflection at A in the z-direction, caused by a unit load in the z-

direction, as shown in the following diagram. This is the same as the deflection 

ple 1 and used in later examples: calculated in Exam

 

 
3 3

1 1 1 3 8

4 4Az

R R

EI GJ

 
Y

         (4.55) 
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Considering the deflection at A in the y-direction next, we see from the following 

diagram that we do not have this result to hand, and so must calculate it: 
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Looking at the elevation of the x-y plane, we have: 

 

 

 

The lever arm, m, is: 

 

 sinm R   (4.56) 

 

Thus the moment at point C is: 

 

   1 1 sinM m R      (4.57) 

 

Using virtual work: 
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 E IW W

0

1 Ay

W

M ds


 

  




  
 (4.58) 

 

In which we note that there is no torsion term, as the unit load in the x-y plane does 

not cause torsion in the structure. Using ZM EI   and ds Rd : 

 

 
2

0

1 Ay

Z

M
M Rd

EI



      (4.59) 

 

Since sinM M R   , and assuming the beam is prismatic, we have: 

 

 
3 2

2

0

1 sinAy

z

R
d

EI



      (4.60) 

 

This is the same as the first term in equation (4.7)  and so immediately we obtain the 

olution as that of the first term of equation (4.11): s

 

 
3

1

4Ay

z

R

EI

    (4.61) 

lection at A in the x-y plane is the same as that in the 

-y plane. This is apparent given that the lever arm is the same in both cases. 

owever, the overall deflections are not the same due t

-y plane. 

ow that we have the deflections in the two orthogonal planes due to the units loads, 

we can determine the deflections in these planes due to the load 

 

In other words, the bending def

z

H o the presence of torsion in the 

z

 

N

1

2
: 
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3

1 2 1 1 3 8
4 42

Az

Y

R

EI GJ


       

  
 (4.62) 

 

 
3

1 2 1
Ay

R

42 zEI


 

  
 

 (4.63) 

he deflection along the line of action of the redundan

 

 

T t is what is of interest: 

 

 

Looking at the contributions of each of these deflections along the line of action of 

e redundant: 

 

th

 

From this we have: 
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1 2

3
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1 1 1 3

4 42 2

1 1 3

8

2 4 4
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Y

Y
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R
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R
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8

        
  

      
  

 (4.64) 

 

 

 

1 2

3

3

1

2

1 1

42 2

1

2 4

Ay Ay

z

z

AD

R

EI

R

EI

 







 
   

 
 

  
 

 (4.65) 

 

Thus the total deflection along the line of action of the redundant is: 

 

 

1

, 4

3 31 1 3 8 1R R

2 4 4 2 4

A Az Ay

Y z

AE AD

EI GJ EI

  

        (4.66) 

 

        
    

This gives, finally: 

 

 

 

3
1

, 4

1 1 1 3 8

2 4 4A

Y z

R

EI EI GJ

 
          

   
 (4.67) 

 

To complete the denominator of equation (4.51), we must include the deflection that 

e cable undergoes due to the unit tension that is the redundant: th
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1

2

L
e

EA

R

EA





 (4.68) 

The relationship between R and L is due to the geometry of the problem – the cable is 

at an angle of 45°. 

Thus the denominator of equation (4.51) is finally: 

 

 

 

 
3

1

, 4 2

1 1 1 3 8 2 2

2 4 4A

Y z

R

EI EI GJ R EA

 
         

   

 

The solution for the tension in the cable becomes, from equations (4.51), (4.54) and 

(4.69): 

   (4.69) 

 

 

 2

4

3

2

21 1

2 2 8 2

1 1 1 3 8 2 2
2 4 4Y z

wR
GJEI

T
R

EI EI GJ R EA



 

 
  


         

   

  (4.70) 

sing

 

U  
Y

GJ

EI
  , 

Y

EA

EI
   and Z

Y

EI

EI
  , we have: 

 

 

 2

1

8 8EI EI EI R

 
 


   

       
  

 (4.71) 

2

21 1

2 2 8 2

1 1 1 3 8 2

YY

Y Y Y Y

T wR
EIEI

EI
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Continuing the algebra: 

 

 

 

   

12

2

2

21 1 1 1 3 8 2
1

8 82 2 8 2

8 8 88 2

T wR
R

R

  
   

  

 

12
4 2 1 1 8 2

1 3 8wR
   



                
       

     

 (4.72) 
              

 

Which finally gives the desired result: 

 

 
   

12

2

4 2 1 1 8 2
1 3 8

2
T wR

R

 
 

  


             

     

empirical approach carried out above there were some steps that are not 

bvious. Within a formal application of virtual work we will see how the results of 

the empirical approach are obtained ‘naturally’. 

 

Following the methodology of the formal virtual work approach of Example 4, we 

can immediately jump to equation (4.46): 

 (4.73) 

 

Formal Virtual Work Approach 

In the 

o

 

 
0 0

0
L L

Ay

M T PL
M ds T ds P

EI GJ EA
                 

 (4.74) 

For the next step we need to recognize that the unit redundant causes bending about 

both axes of bending and so the first term in equation (4.74) must become: 

 

 

 

0 0 0

L L L
Y Z

Y Z
Y Z

M M M
M ds M ds M ds

EI EI EI
 

                  
     (4.75) 
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In which the notation YM  and ZM  indicate the final bending moments of the actual 

structure about the Y-Y and Z-Z axes of bending respectively. Again we use 

superposition for the moments, torques and axial forces: 

Y

 

 

0 1

0 1

0 1

0 1

Y Y

Z Z Z

M M M

M M M

T T T

P P P






 

 

 

 

 (4.76) 

e do not require more torsion terms since there is only torsion in the z

equations (4.75) and (4.76), equation (4.74) becomes: 

 

W -y plane. With 

 

 

   

   

0 1L M M 0 1

0 0

0

L M M

0 1 0 1

0
Y Y Z Z

Y Z
Y Z

L

M ds M ds
EI EI

T T P P L
T ds

GJ

 

 


      
   

  
   

 

 



 (4.77) 

P
EA





 

   


 

 

 

 

Multiplying out gives: 

 

0 1

0 0

0 1

0 0

0 1

0 0

L L

0 1

0
L L

Y Y
Y Y

Y Y

L L
Z Z

Z Z
Z Z

M M
M ds M ds

EI EI

M M
M ds M ds

EI EI

P L P L
P P

T T
T ds T ds

GJ GJ

EA EA

  

  

  

    

    

    

 

 
 (4.78) 
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At this point we recognize that some of the terms are zero: 

-z axis of the beam) in the 

primary structure as the loading is purely vertical, thus 

 There is no axial force in the primary structure since the cable is ‘cut’, and so 
0 0P  ; 

 There is no bending in the x-y plane (about the z
0 0ZM  . 

Including these points, and solving for   gives: 

 

 

0 0

0 0

1 1 1 1

0 0 0

L L
Y

Y
Y

L L L
Y Z

Y Z

M T
M ds T ds

EI GJ

M M T P L

Y Z

M ds M ds T ds P
EI EI GJ EA

 


          
 
  

 

 
   

  
 

 
 (4.79) 

e will next examine this expression term-by-term. 

 

W

0

0

L
Y

Y
Y

M
M ds

EI
  

For this term, 0

YM  are the moments caused by the UDL about the y-y axis of bending, 

s per  equation (4.13): a

 

    0 2 1 cosYM wR    (4.80) 

 

YM  are the moments about the same axis caused by the unit redundant. Since this 

ane of interest, thes

by its vertical component of 

redundant acts at an angle of 45° to the pl e moments are caused 

1

2
. From equation (4.4), we thus have: 

 

   1
sin

2
YM R     (4.81) 
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Notice that we have taken it that downwards loading causes positive bending 

moments. Thus we have: 

 

 

 

 

0
21 1

1 cos sin
L L

YM

0 0

2

Y Y

3

0

2

sin sin cos
2

Y

Y

M ds wR R d   s

wR
Rd

EI



   

EI EI
         

  
 (4.82) 

 

 which we have used the relation 

 

In ds Rd . From the integral append

have: 

ix we thus 

 

 

 

       

2

0
00

3

1
cos2

42

1
0 1 1 1

42

Y
Y Y

Y

EI EI

wR

EI




0 4

2
cos

L
YM wR

M ds
 

            

               

 (4.83) 

And so finally: 

 



 

 
0 4

0 2 2

L
Y

Y
Y Y

M wR
M ds

EI EI
    (4.84) 

 

0

0

L T
T ds

GJ
  

The torsion caused by the UDL in the primary structure is the same as that from 

quation (4.14): 

 

e

    0 2 sinT wR     (4.85) 
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Similarly to the bending term, the torsion caused by the unit redundant is 
1

 that of 
2

e unit load of  equation (4.17): 

 

th

    1
1 cos

2
T R       (4.86) 

 

gain note that we take the downwards loads as causing positive torsion. Noting A

ds Rd  we thus have: 

 

 

   

  

20
2

0 0

24

0

1 1
sin 1 cos

2

sin 1 cos
2

L T
T ds wR R Rd

GJ GJ

wR
d

GJ





   

   

          

   

 




 (4.87) 

 

his integral is exactly that of the second term in equation (4.19). Hence we can take 

uation (4.20) to give:  

T

its result from eq

 

 
 220 4

0

2

82

L T wR
T ds

GJ GJ





     (4.88) 
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For this term we recognize that 1

Y YM M  and are the moments caused by the 
1

2
 

component of the unit redundant in the vertical direction and are thus given by 

equation (4.1): 

 

  1 1
sin

2
Y YM M R   

 

 

 (4.89) 

 

Hence this term becomes: 

1 2

0 0

3 2
2

0

1 1 1
sin sin

2 2
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 (4.90) 

 

rom the integral tables we thus have: F

 

 

 

21L
Y

Y

M R
M ds 

3

0 0
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1
sin 2

2 2 4

1
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2 4 4

Y Y
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 (4.91) 

 

nd so we finally have: 

 

A

 
1 3

0 8

L
Y

Y

Y Y

M R
M ds

EI EI

    (4.92) 

 

1

0

L
Z

Z
Z

M
M ds

EI
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Again we recognize that 1

Z ZM M  are the moments caused by the  and
1

2
 

component of the unit redundant in the x-y plane and are thus given by equation 

(4.57). Hence this term becomes: 

 

 
1 2

0 0

1 1 1
sin sin

2 2

L
Y

Y

Y Y

M
M ds R

EI EI



R Rd          
 

on (4.90) except for the different flexural rigidity, and so 

e solution is got from equation (4.92) to be: 

 

 
  (4.93) 

 

This is the same as equati

th

 
1 3

0 8

L
Z

Z

Z Z

M R
M ds

EI EI

    (4.94) 

 

1

0

L T
T ds

GJ
  

Once again note that 1T T  and are the torques caused by the 
1

2
 vertical 

omponent of the unit redundant. From equation (4.2), then we h

 

c ave: 

  1 1
1 cos

2
T T R     (4.95) 

Thus: 
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 (4.96) 
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This integral is that of equation (4.9) and so the solution is: 

 
1L T 3

0

3 8

8

R
T ds

GJ GJ

     
   (4.97) 

 

1P L
P

EA
  

Lastly then, since 1 1P P   and 2L R , this term is easily calculated to be: 

 

 
1 2P L R

P
EA E

 
A

 (4.98) 

 

ith the values for all terms now worked out, we substitute these values into 

equation (4.79) to determine the cable tension: 

 

W

 

 224 4

3 3 3

2

3 8 2

Y

wR wR

R R R R

82 2 2

8 8 8Y Z

EI GJ

EI EI GJ EA

 
 
 

      
  

(4.99) 

and re-arranging gives: 

 




  


 

  
  

 

 

Cancelling the negatives 
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 (4.100) 
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And this is the same as equation (4.70) and so the solution can proceed as before to 

parison of the virtual work with the empirical form

of each of the terms in the virtual work equation that is inherent in the empirical view 

f such problems. 

 

obtain the tension in the cable as per equation (4.73).  

 

Com  illustrates the interpretation 

o
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4.6 Review of Examples 1 – 5 

xample 1 E

For a radius of 2 m and a point load of 10 kN, the bending and torsion moment 

diagrams are: 
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Using the equations derived in Example 1, the Matlab script for this is: 

 

function RingBeam_Ex1 
% Example 1 
R = 2;      % m 
P = 10;     % kN 
  
theta = 0:(pi/2)/50:pi/2; 
M = P*R*sin(theta); 
T = P*R*(1-cos(theta)); 
  
hold on; 
plot(theta.*180/pi,M,'k-'); 
plot(theta.*180/pi,T,'r--'); 
ylabel('Moment (kNm)'); 
xlabel('Degrees from Y-axis'); 
legend('Bending','Torsion','location','NW'); 
hold off; 
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Example 2 

For a radius of 2 m and a UDL of 10 kN/m, the bending and torsion moment 

diagrams are: 

 

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

M
om

en
t 

(k
N

m
)

Degrees from Y-axis

Bending

Torsion

 

 

Using the equations derived in Example 2, the Matlab script for this is: 

 

function RingBeam_Ex2 
% Example 2 
R = 2;      % m 
w = 10;     % kN/m 

a)); 

  
theta = 0:(pi/2)/50:pi/2; 

a)); M = w*R^2*(1-cos(thet
T = w*R^2*(theta-sin(thet
  
hold on; 
plot(theta.*180/pi,M,'k-'); 
plot(theta.*180/pi,T,'r--'); 
ylabel('Moment (kNm)'); 
xlabel('Degrees from Y-axis'); 
legend('Bending','Torsion','location','NW'); 
hold off; 
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Example 3 

For the parameters given below, the bending and torsion moment diagrams are: 
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Using the equations derived in Example 3, the Matlab script for this is: 

 

ction [M T alpha] = RingBeam_Ex3(beta) 

          % mm4 

s Ratio 
dulus 

GJ/EI;       % Torsion stiffness ratio 
end     
  
alpha = w*R*(4*beta+(pi-2)^2)/(2*beta*pi+2*(3*pi-8)); 
  
theta = 0:(pi/2)/50:pi/2; 

 

fun
% Example 3 
R = 2;              % m 
w = 10;             % kN/m 

 2.7e7;          % mm4 I =
J = 5.4e7;
E = 205;            % kN/mm2 
v = 0.30;           % Poisson'

ar moG = E/(2*(1+v));    % She
EI = E*I/1e6;       % kNm2 
GJ = G*J/1e6;       % kNm2 

 1 if nargin <
    beta = 
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M0 = w*R^2*(1-cos(theta)); 
(theta-sin(theta)); 

 

M = M0 + alpha.*M1; 
T = T0 + alpha.*T1; 
  
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,M,'k-'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('Bending','Torsion','location','NW'); 
    hold off; 
end 

T0 = w*R^2*
M1 = -R*sin(theta);
T1 = -R*(1-cos(theta)); 
  

 

The vertical reaction at A is found to be 11.043 kN. Note that the torsion is 

(essentially) zero at support B. Other relevant values for bending moment and torsion 

are given in the graph. 

 

By changing  , we can examine the effect of the relative stiffnesses on the vertical 

reaction at A, and consequently the bending moments and torsions. In the following 

plot, the reaction at A and the maximum and minimum bending and torsion mo ents 

re given for nge of

m

a a ra    values. 

ery small values of 

 

V   reflect little torsional rigidity and so the structure movements 

w ly, large values ofill be dominated by bending solely. Converse    reflect structures 

w n comparison to torsional stiffness. At either extreme 

the variables converge to asymptotes of extreme behaviour. For 

ith small bending stiffness i

0.1 10 

is reflects the normal 

 the 

esses. Of course, th

r

variables are sensitive to the relative stiffn

ange of values for  . 
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The Matlab code to produce this figure is: 

Be eta(i)); 

    Eff(i,2) = max(M); 
    Eff(i,3) = min(M); 

); 
' Min M','Max T','Min T','Location','NO',... 
'horizontal'); 

xlabel('Beta'); 
ylabel('Load Effect (kN & kNm)'); 

 

% Variation with Beta 
beta = logspace(-3,3); 
n = length(beta); 
for i = 1:n 
    [M T alpha] = Ring am_Ex3(b
    Eff(i,1) = alpha; 

    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
  
hold on; 
plot(beta,Eff(:,1),'b:'); 
plot(beta,Eff(:,2),'k-','LineWidth',2); 
plot(beta,Eff(:,3),'k-'); 
plot(beta,Eff(:,4),'r--','LineWidth',2); 
plot(beta,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'
legend('Va','Max M ,'
    'Orientation',
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Example 4 

For a 20 mm diameter cable, and for the other parameters given below, the bending 

and torsion moment diagrams are: 
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The values in the graph shoul  of Example 3, where the support 

was rigid. The Matlab script, using Example 4’s equations, for this problem is: 

 

ingBeam_Ex4(gamma,beta) 
mple 4 

          % m - radius of beam 
ength of cable 

 

 
son's Ratio 

    beta = GJ/EI;       % Torsion stiffness ratio 
end 
if nargin < 1 
    gamma = EA/EI;      % Axial stiffness ratio 
end 

d be compared to those

funct
xa
ion [M T alpha] = R

% E
R = 2;    
L = 2;              % m - l
w = 10;             % kN/m - UDL 

 area of cableA = 314;            % mm2 -
I = 2.7e7;          % mm4 
J = 5.4e7;          % mm4 

         % kN/mm2E = 205;   
v = 0.30;           % Pois
G = E/(2*(1+v));    % Shear modulus 

tiffness EA = E*A;           % kN - axial s
   % kNm2 EI = E*I/1e6;    

GJ = G*J/1e6;       % kNm2 
if nargin < 2 
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alpha = w*R
 

*(4*beta+(pi-2)^2)/(2*beta*pi+2*(3*pi-8)+8*(beta/gamma)*(L/R^3)); 
 

M0 = w*R^2*(1-cos(theta));

T1 = -R*(1-cos(theta)); 
  
M = M0 + alpha.*M1; 
T = T0 + alpha.*T1; 
  
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,M,'k-'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('Bending','Torsion','location','NW'); 
    hold off; 
end 

 
theta = 0:(pi/2)/50:pi/2; 

 
T0 = w*R^2*(theta-sin(theta)); 
M1 = -R*sin(theta); 

 

Whist keeping the   constant, we can examine the effect of varying the cable 

stiffness on the behaviour of the structure, by varying  . Again we plot the reaction 

at A and the maximum and minimum bending and torsion moments for the range of 

  values. 

 

For small  , the cable has little stiffness and so the primary behaviour will be that of 

Example 1, where the beam was a pure cantilever. Conversely for high  , the cable is 

very stiff a

a oments for these two cases with 

t

nd so the beam behaves as in Example 3, where there was a pinned support 

t A. Compare the maximum (hogging) bending m

he graph. Lastly, for 0.01 3  , the cable and beam interact and the variables are 

s cal values in practice are towards the 

l

 

ensitive to the exact ratio of stiffness. Typi

ower end of this region. 
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The Matlab code for this plot is: 

gamma = logspace(-3,3); 
n = length(gamma); 
for i = 1:n 
    [M T alpha] = RingBeam_Ex4(gamma(i)); 

    Eff(i,3) = min(M); 

,'LineW
); 

; 
legend('T','Max M','Min M','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Gamma'); 
ylabel('Load Effect (kN & kNm)'); 

 

 

% Variation with Gamma 

    Eff(i,1) = alpha; 
    Eff(i,2) = max(M); 

    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
  
hold on; 
plot(gamma,Eff(:,1),'b:'); 
plot(gamma,Eff(:,2),'k-' idth',2); 
plot(gamma,Eff(:,3),'k-'
plot(gamma,Eff(:,4),'r--','LineWidth',2); 
plot(gamma,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log')
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Example 5 

Again we consider a 20 mm diameter cable, and a doubly symmetric section, that is 

Y ZEI EI . For the parameters below the bending and torsion moment diagrams are: 
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The values in the graph should be comp o those of Example 4, where the cable 

was vertical. The Matlab script, using Example 5’s equations, for this problem is: 

 

RingBeam_Ex5(lamda,gamma,beta) 
mple 5 

          % m - radius of beam 
 UDL 

son's Ratio 

if nargin < 3 
    beta = GJ/EIy;      % Torsion stiffness ratio 
end 
if nargin < 2 
    gamma = EA/EIy;     % Axial stiffness ratio 
end 
if nargin < 1 

ared t

funct
xa
ion [My T alpha] = 

% E
R = 2;    
w = 10;             % kN/m -
A = 314;            % mm2 - area of cable 
Iy = 2.7e7;         % mm4 
Iz = 2.7e7;         % mm4 
J = 5.4e7;          % mm4 

         % kN/mm2 E = 205;   
v = 0.30;           % Pois
G = E/(2*(1+v));    % Shear modulus 

tiffness EA = E*A;           % kN - axial s
  % kNm2 EIy = E*Iy/1e6;   

EIz = E*Iz/1e6;     % kNm2 
GJ = G*J/1e6;       % kNm2 
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    lamda = EIy/EIz;    % Bending stiffness ratio 

alpha = 
  
theta = 0:(pi/2)/50:pi/2; 
M0y = w*R^2*(1-cos(theta)); 
M0z = 0; 
T0 = w*R^2*(theta-sin(theta)); 
M1y = -R*sin(theta); 
M1z = -R*sin(theta); 
T1 = -R*(1-cos(theta)); 
  
My = M0y + alpha.*M1y; 
Mz = M0z + alpha.*M1z; 
T = T0 + alpha.*T1; 
  
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,My,'k'); 
    plot(theta.*180/pi,Mz,'k:'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('YY Bending','ZZ Bending','Torsion','location','NW'); 
    hold off; 
end 

end 
  
numerator = (4*beta+(pi-2)^2)/(beta*sqrt(2)); 
denominator = (pi*(1+1/lamda)+(3*pi-8)/beta+8*sqrt(2)/(gamma*R^2)); 

w*R*numerator/denominator; 

 

Keep all parameters constant, but varying the ratio of the bending rigidities by 

changing  , the output variables are as shown below. For low   (a tall slender 

eam  behaves as a cantilever. Thus the cable requires some transverse 

b

b ) the beam

ending stiffness to be mobilized. With high   (a wide flat beam) the beam behaves 

a ertical movement takes place, and the 

e t A. Usually 

s if supported at A with a vertical roller. Only v

 affect of the cable is solely its vertical stiffness 0.1 2   which means 

that the output variables are usually quite sensitive to the input parameters. 
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T

 

% Variation with Lamda 

    Eff(i,5) = min(T); 

  

plot(lamda,Eff(:,4),'r--','LineWidth',2); 
plot(lamda,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'); 
legend('T','Max My','Min My','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Lamda'); 
ylabel('Load Effect (kN & kNm)'); 

he Matlab code to produce this graph is: 

lamda = logspace(-3,3); 
n = length(lamda); 
for i = 1:n 
    [My T alpha] = RingBeam_Ex5(lamda(i)); 
    Eff(i,1) = alpha; 
    Eff(i,2) = max(My); 
    Eff(i,3) = min(My); 
    Eff(i,4) = max(T); 

end 

hold on; 
plot(lamda,Eff(:,1),'b:'); 
plot(lamda,Eff(:,2),'k-','LineWidth',2); 
plot(lamda,Eff(:,3),'k-'); 
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5. Advanced: Grid Examples 

5.1 Example 1 

Problem 

For the grid structure shown, which has flexural and torsional rigidities of EI and GJ 

respectively, show that the vertical reaction at C is given by: 

 

 
1

2 3CV P


 
   

  

 

Where 

 

 
EI

GJ
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Solution 

Using virtual work, we have: 

 

 
0

0

E IW W

M T

W

M ds T ds
EI GJ


 

 



    

 (5.1) 


hoosing the vertical reaction at C as the redundan

 

 

C t gives the following diagrams: 

 

  

 

oment diagram is: 

 

And the free bending m
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But the superposition gives: 

 

 0 1M M M   (5.2) 

 0 1T T T   (5.3) 

 

Substituting, we get: 

 

 
   0 1 0 10
M M T T

M ds T ds
EI GJ

 
 

 
      (5.4) 

 
2 2

0 1 1 0 1 1 0
M M M T T T

ds ds ds ds
EI EI GJ GJ

         (5.5) 

 
2 2

0 1 1 0 1 1 0
M M M T T T

ds ds ds ds
EI EI GJ GJ

         (5.6) 

 

Taking the beam to be prismatic, and 
EI

GJ
   gives: 

 

 

2 2
0 1 1 0 1 1 0M M ds M ds T T ds T ds          (5.7) 
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From which: 

 

 
0 1 0 1

2 2
1 1

M M ds T T ds

M ds T ds






   
  

 
 

 (5.8) 

 

From the various diagrams and volume integrals tables, the terms evaluate to: 

 

 

   

 

   

   

3

0 1

0 1

2 3
1

2 3L1

1

3 3

0 0

1 2
2

3 3

PL
M M ds L PL L

T T ds

M ds L L L L

T ds L L L

 

 

   

 

   
 

 







 (5.9) 

ubstituting gives: 

 



 

S

 

 

3

3 3

3

3 2
3

0
3

2
3

1 1

3

PL

L L

PL

L






 
  
  
   

  


 (5.10) 

hich yields: 

 

 

W

 

1

2 3CV P


 
    

 (5.11) 
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Numerical Example 

Using a 200 × 400 mm deep rectangular concrete section, gives the following: 

 

 

3 4 3 41.067 10  m 0.732 10  mI J     

 

The material model used is for a 50N concrete with: 

 

 230 kN/mm 0.2E    

 

sing the elastic relation, we have: 

 

 

U

   
6

6 230 10
12.5 10  kN/m

2 1 2 1 0.2

E
G




   
 

 

 

From the model, LUSAS gives: 0.809 kNCV  . Other results follow. 

 

 

Deflected Shape 
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Bending Moment Diagram 

 

 

Torsion Moment Diagram 

 

 

Shear Force Diagram 
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5.2 Example 2 

Problem 

For the grid structure shown, which has flexural and torsional rigidities of EI and GJ 

respectively, show that the reactions at C are given by: 

 

 
4 4 4 2

8 5 8 5C CV P M PL
 
 

    
        

  

Where 

 

 

 

EI

GJ
   

 

 

 

(Note that the support symbol at C indicates a moment and vertical support at C, but 

no torsional restraint.) 
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Solution 

The general virtual work equations are: 

 

 
0

0

E I

W

W W

M T
M ds T ds

EI GJ


 




     

 (5.12) 

e choose the moment and vertical restraints at C as the redundants. The vertical 

nt gives the same diagrams as before: 

 

W

redunda

 

  

 

And, for the moment restraint, we apply a unit moment: 

 

 

 

Which yields the following: 
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Again the free bending moment diagram is: 

 

 

 

Since there are two redundants, there are two possible equilibrium sets to use as the 

virtual moments and torques. Thus there are two equations that can be used: 

 

 1 10
M T

M ds T ds
EI GJ

      (5.13) 

 2 20
M T

M ds T ds
EI GJ

      (5.14) 
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Superposition gives: 

 

 20 1 1 2M M M M     (5.15) 

 20 1 1 2T T T T     (5.16) 

 

Substituting, we get from equation (5.13): 

 

 
   0 1 1 2 2 0 1 1 2 2

1 10
M M M T T T

M ds T ds
EI GJ

      
      (5.17) 

 

2
0 1 1

1 2

M M M
ds ds    2 1

2
0 1 1 2 1

1 2 0

M M
ds

EI EI EI

T T T T T
ds ds ds

GJ GJ GJ
    



  
 (5.18) 

 

Taking the beam to be prismatic, and 
EI

GJ
   gives: 

 

 


 (5.19) 

 

imilarly, substituting equations (5.15) and (5.16) into equation (5.14) gives: 


(5.20) 

We can write equations (5.19) and (5.20) in matrix form for clarity: 

2
0 1 1 1 2 2 1

2
0 1 1 1 1 2 1 0

M M ds M ds M M ds

T T ds T ds T T ds

 

    

 

  

  
  

S

 

 
2

0 2 1 1 2 2 2M M ds M M ds M ds      
2

0 2 1 1 2 2 2 0T T ds TT ds T ds        
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  (5.21) 

0 1M M d  0 1

0 2 0 2

2 2
1 1 2 1

2 2
21 2 1 2 2 2

s T T ds

M M ds T T ds

M ds T ds M M ds T T ds

M M ds TT ds M ds T ds





 

 

   
  

  
 
     


 

   
   

2 1 1

valuating the integrals for the first equation gives: 

 

0
 

 

 

E

 

3

0 1 0 1

3
2 2

1 1

2 2
2 1 2 1

0
3

2

3
1

2

PL
M M ds T T ds

L 3M ds T ds L

M M ds L T T ds L



 

 


 



   

 

 

 

  (5.22) 

 

 

And for the second: 

 

0 2 0 2

2 2
1 2 1 2

2 2
2 2

0 0

1

2

M M ds T T ds

M M ds L TT ds L

M ds L T ds L



 

 

 

   

 

 

 
 

 (5.23) 

Substituting these into equation (5.21), we have: 

 

 

 

  22

3
0 1L L


 

   
         

3 23

1

2

3 2
0

2

L LPL  


                      

    

 (5.24) 

 

Giving: 
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1

3 2 3

1

2 2

2

3 2
3
01

2

L L PL

L L

 



 


                     
   

 
         

 (5.25) 

 

 

Inverting the matrix gives: 

 

   

   

3
3 2

1

2
2

12 6
1 1 2

1
3

5 8 6 4
01 2 2 3

PL
L L

L L

 

 

 

                                        

 (5.26) 

 

Thus: 

 

 

 

 

 
 

3

3
1

3
2

2

12
1

3 4 11
2 1 25 8 5 86

1 2
3

PL

L P
LPL

L



  



                                    

 (5.27) 

 

hus, since , we have: 

 

T  1 CV

M




  
   

   2 C

  

4 4 4 2

8 5 8 5C CV P M PL
 
 

    
        

 (5.28) 

And this is the requested result. 

 

 

 



Structural Analysis IV 

Dr. C. Caprani 124

Some useful Matlab symbolic computation script appropriate to this problem is: 

 

beta L P syms 
  
A = [  L^3*(2/3+beta) -L^2*(0.5+beta); 
       -L^2*(0.5+beta)  L*(1+beta)]; 
  
A0 = [P*L^3/3; 0]; 
invA = inv(A); 
invA = simplify(invA); 
disp(simplify(det(A))); 
disp(invA); 
alpha = invA*A0; 
alpha = simplify(alpha); 

 



Structural Analysis IV 

Dr. C. Caprani 125

Numerical Example 

For the numerical model previously considered, for these support conditions, LUSAS 

es us: 

 

giv

 

 5.45 kN 14.5 kNmC CV M   

 

 

Deflected Shape 

 

 

Shear Force Diagram 
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Torsion Moment Diagram 

 

 

Bending Moment Diagram 
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5.3 Example 3 

Problem 

For the grid structure shown, which has flexural and torsional rigidities of EI and GJ 

respectively, show that the reactions at C are given by: 

 

 
 
   
2 1 1

2 4 1C C C

P PL PL
V M T





    

4 1  
  

Where 

 

 

 

EI

GJ
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Solution 

The general virtual work equations are: 

 

 
0

0

E I

W

W W

M T
M ds T ds

EI GJ


 




     

 (5.29) 

e choose the moment, vertical, and torsional restraints at C as the redundants. The 

and moment redundants give (as before): 

 

W

vertical 

 

  

 

  

 

Applying the unit torsional moment gives: 
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Again the free bending moment diagram is: 

 

 

 

Since there are three redundants, there are three possible equilibrium sets to use. Thus 

e have the following three equations: w
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 1 10
M T

M ds T ds
EI GJ

      (5.30) 

 2 20
M T

M ds T ds
EI GJ

      (5.31) 

 3 30
M T

M ds T ds
EI GJ

      (5.32) 

 

Superposition of the structures gives: 

 

 30 1 1 2 2 3M M M M M       (5.33) 

 30 1 1 2 2 3T T T T T       (5.34) 

 

Substituting, we get from equation (5.13): 

 

 
   0 1 1 2 2 3 3

10
M M M M 0 1 1 2 2 3 3

1

T T T T
M ds T ds

EI GJ

    
 

    
   (5.35) 

 

2
0 1 1 2 1 3 1

1 2 3

2
0 1 1 2 1 3 1

1 2 3 0

M M M M M M M
ds ds ds ds

EI EI EI EI

T T T T T T T
ds ds ds ds

GJ GJ GJ GJ

  

  

  

   

   

    

 (5.36) 

 

Taking the beam to be prismatic, and 
EI

GJ
   gives: 

 

 
2

0 1 1 1 2 2 1 3 3 1

2
0 1 1 1 2 2 1 3 3 0

M M ds M ds M M ds M M ds

T T ds T ds T T ds T T ds

  

      

  

1   

   
    

 (5.37) 

 

Similarly, substituting equations (5.15) and (5.16) into equations (5.14) and (5.32) 

gives: 
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2 ds2

0 2 1 1 2 2 2 3 3

2
0 2 1 1 2 2 2 3 3 2 0

M M ds M M ds M ds M M

T T ds TT ds T ds T T ds

  

      

  

   

   
    

 

 (5.38) 

2
0 3 1 1 3 2 2 3 3 3

0 3 1 1 3 2 2 3

M M ds M M ds M M ds M ds

T T ds TT ds T T

  

    

  

2
3 3 0ds T ds   

   
    

 (5.39) 

 and (5.39) in matrix form for clarity: 

 

We can write equations (5.19), (5.20),

 

             0 0M + δM α + T + δT α = 0  (5.40) 

 

Or more concisely: 

 

        0A δA α 0  (5.41) 

 

In which  is the ‘free’ actions vector: 

 

 

 0A

     
0 1 0 1

0 2 0 2

0 3 0 3

M M ds T T ds

M M ds T T ds

M M ds T T ds



 



 
 
    
 

  

 
 
 

0 0 0A M + T  (5.42) 

: 

 

And  δA  is the virtual actions matrix

 

     
2 2

1 1 2 1 2 1 1 3 1 3

2 2
1 2 1 2 2 2 2 3 2 3

2 2
1 3 1 3 2 3 2 3 3 3

M ds T ds M M ds T T ds M M ds TT ds

M M ds TT ds M ds T ds M M ds T T ds

M M ds TT ds M M ds T T ds M ds T ds



 

 



   
 
    
 

     
     

δA δM + δT




(5.43) 
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And  α  is the redundant multipliers vector: 

  

  
1

2

3





 
   
 
 

α  (5.44) 

 

Evaluating the free actions vector integrals gives: 

 

 

3

0 1 0 1

0 2 0 2

2

0 3 0 3

0
3

0 0

0
2

PL
M M ds T T ds

M M ds T T ds

PL
M M ds T T ds








 

 

 

 
 

 

 (5.45) 

als are (noting that the matrices are 

symmetrical): 

 

 

The virtual moment and torsion integr

 

3 2
2

1 2 1 1

2
2 2

2
3

2

3 2

2

3

3 0

2

L L L
M ds M M ds M M

M ds L M M ds

M ds L

  

 



  
 

ds  



 (5.46) 

 

1 3

3



 

2 3 2
1 2 1

2
2 2

2
3

0

0

T ds L T T ds L TT ds

T ds L T T ds

T ds L

  

 



 
 





 (5.47) 

 

Substituting these integral results into equation (5.41) gives: 
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3
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2
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PL L
L L


  




      

              
  
         

 (5.48) 

 

3  

 

 

 

2
3 2 3

1
2

2

2
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2 1 L    
3 2 2

3
1

1 0 0
2

0 1
2

L L PL

L L

L
L

 


  





   

2

PL

             
               

           
     

 

 (5.49) 

 

verting the matrix gives: 

 

In

 

     

     

3 2 2

1 2

2 2

3

2

6 1 3 2 1 3 1

4 1 4 1 4 1

3 2 1 1 12 20 5 3 2 1

4 1 2 4 1 1 2 4 1 1

3 1 3 2 1 1 8 5

4 1 2 4 1 1 2 4 1 1

L L L

L L L

L L L

 
  


   
    


 

    

                    
                                 

       
               

3

3
0

2

PL

P

 
 
  
 
 
  


(5.50) 

Thus: 

2L 
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1 3 2

2 2

3 3 2

2
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1

3 2

1 3 3 2 1
2 1

4 1 3 2 2 1

3 1 8 5

3 2 2 1

PL PL

L L
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L L

PL PL

L L




 
 





         
                                    

                  

 (5.51) 

 

plifying, we get: 

 

 

Sim

 
 

 

1

2

3

2
2 1

4 1

1

4 1

P

PL

PL











 
 
              

   
 

  

 (5.52) 

 

Since the redundants chosen are the reactions required, the problem is solved. 

 

ome useful Matlab symbolic computation script appropriate to this problem is: 

 

syms beta L P 

 

S

  
A = [  L^3*(beta+2/3)  -L^2*(beta+0.5)  -L^2/2; 
       -L^2*(beta+0.5) L*(beta+1)         0; 
       -L^2/2           0              L*(beta+1)]; 
  
A0 = [P*L^3/3; 0; -P*L^2/2]; 
invA = inv(A); 
invA = simplify(invA); 
disp(simplify(det(A))); 
disp(invA); 
alpha = invA*A0; 
alpha = simplify(alpha); 
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Numerical Example 

For the numerical model previously considered, for these support conditions, LUSAS 

ives us: 

 

 

g

5.0 kN 13.3 kNm 1.67 kNmC C CV M T    

 

 

Deflected Shape 

 

 

Shear Force Diagram 

 



Structural Analysis IV 

Dr. C. Caprani 136

 

Torsion Moment Diagram 

 

 

Bending Moment Diagram 
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6. Appendix – Past Exam Questions 

6.1 Sample Paper 2007 

 
3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work: 
 

(i) Determine the bending moment moments due to the loads as shown; 
(15 marks) 

 
(ii) Draw the bending moment diagram, showing all important values; 

(4 marks) 
 

(iii) Determine the react
(3 marks) 

 
(iv) Draw the deflected shape of the frame. 

(3 marks) 
 
Neglect axial effects in the flexural members. 
Take the following values: 
I for the frame = 150×106 mm4; 
Area of the stay EB = 100 mm2; 
Take E = 200 kN/mm2 for all members. 

 
 

ions at A and E; 

FIG. Q3

2 m

2 
m

2 
m

A

C

D

10 kN

B

E

2 m
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6.2 Semester 1 Exam 2007 

 
3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work: 

(i) Determine the bending moment moments due to the loads as shown; 
(15 marks) 

e. 

 

Take the following values: 
 the frame = 150×106 mm4; 

ll members. 
 

 

 

 
(ii) Draw the bending moment diagram, showing all important values; 

(4 marks) 
 

(iii) Determine the reactions at A and E; 
(3 marks) 

 
(iv) Draw the deflected shape of the fram

(3 marks) 

Neglect axial effects in the flexural members. 

I for
Area of the stay EF = 200 mm2; 
Take E = 200 kN/mm2 for a

FIG. Q3

4 m

4 
m

4 
m

A

C

D

10 kN

B

4 m

E20 kN

F

 
 

nsA . 35.0  . 
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6.3 Semester 1 Exam 2008 

QUESTION 3 

For the frame n

(i) Determine the force in the tie; 
(ii) Dra  t
(iii) 
(iv) Determine an area of the tie such that the bending moments in the beam are minimized; 
(v) Fo n at C; 
(vi) 

(25 marks) 

 

Note: 

Neglect axial  take the following values: 

 For t

 For t

 For all members,
 

 

 

show  in Fig. Q3, using Virtual Work: 

w he bending moment diagram, showing all important values; 
Determine the deflection at C; 

r this new area of tie, determine the deflectio
Draw the deflected shape of the structure. 

 

effects in the flexural members and

he frame, 6 4600 10  mmI   ; 

he tie, 2300 mmA  ; 

 2200 kN/mmE  . 

D

4 
m

A

2 m

FIG. Q3

2 m

B C

20 kN/m

TIE

 

Ans. 421.2  ; 4.1 mmCy   ; 22160 mmA  ; 2.0 mmCy    
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6.4 Semester 1 Exam 2009 

QUESTION 3 

 

For the frame shown in Fig. Q3, using Virtual Work: 

 

(i) Determine the axial forces in the members; 
(ii) Draw the bending moment diagram, showing all important values; 

 (iii) Determine the reactions; 
(iv) Determine the vertical deflection at D; 
(v) Draw the deflected shape of the structure. 

 

(25 marks) 

BCD 4

s BF

 

 

Note: 

Neglect axial effects in the flexural members and take the following values: 

 For the beam A  m, 6600 10 mI   ; 

 For member  and CE, A 2300 mm ; 

 For all members, 2 . 200 kN/mmE 

E

3 
m

A

3 m

FIG. Q3

4 m

C D

F

3 
m

1 m

60 kN

B

Ans. 113.7   (for CE); 55 mmDy    
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6.5 Semester 1 Exam 2010 

 
Q
 

UESTION 3 

(i) Draw the bending moment diagram, showing all important values; 

(iv) Draw the deflected shape of the structure. 
 

t axial effects in the flexural members and take the following values: 

lts your solution: 

For the frame shown in Fig. Q3, using Virtual Work: 
 

 
(ii) Determine the horizontal displacement at C; 

 
(iii) Determine the vertical deflection at C; 

 

(25 marks) 
 
Note: 
Neglec

 For the beam ABC, 3 25 10  kNmEI   ; 

 For member BD, 2E   and A200 kN/mm 2200 mm ; 
 The following integral resu may assist in 

 

sin cosd      1
cos sin cos 2

4
d      2 1

sin sin 2
2 4

d
     

 

2 
m

A

FIG. Q3

C

D

4 m

50 kN

B

2 
m

 
 

Ans. 37.1   (for BD); 104 mmCx   83 mmCy    
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7. Appendix – Trigonometric Integrals 

7 l Identities 

I e of the trigonometric identities: 

 

.1 Usefu

n the following derivations, use is mad

 

1
cos sin sin 2

2
    (7.1) 

 

 

 2 1
cos 1 cos2

2
    (7.2) 

 

  2
2

2 1
sin 1 cos   (7.3) 

 

Integration by parts is also used: 

 

 

 

u dx ux x du C     (7.4) 
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7.2 Basic Results 

Neglecting the constant of integration, some useful results are: 

 

 cos sind    (7.5) 

 

 sin cosd     (7.6) 

 

 
1

sin cosa d a
a

    (7.7)  

 

 
1

cos sina d a
a

     (7.8) 
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7.3 Common Integrals 

nalysis problems are: The more involved integrals commonly appearing in structural a

 

cos sin d    

Using identity (7.1) gives: 

 

 
1

cos sin sin 2
2

d d       

 

Next using (7.7), we have: 

 

 

1 1 1
sin 2 cos2

2 2 2

1
cos2

4

d  



    

 


 

 

And so: 

 

 
1

cos sin cos2
4

d      (7.9) 
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2cos d   

Using (7.2), we have: 

 

 
 2 1

cos 1 cos2
2
1

1 cos2
2

d d

d d

   

  

 

   

 

 
 

 

ext using (7.8): N

 

 

1
1 c

1 1
os2 sin 2

2 2 2

1
sin 2

2 4

d d    

 

       

 
 

And so: 

 

 

 

 2 1
cos sin 2

2 4
d

     (7.10) 
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2sin d   

Using (7.3), we have: 

 

 
 2 1

sin 1 cos2
2
1

1 cos2
2

d d

d d

   

  

 

   

 

 
 

 

Next using (7.8): 

 

 

1 1
1 cos2 sin 2

2 2

1
sin 2

2 4

d d
1

2
    

 

        

 

 
 

 

And so: 

 

 2 1
sin sin 2

2 4
d

      (7.11) 
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cos d    

Using integration by parts write: 

 co x

Where: 

d

 

s d u d      

 

 

 cosu dx     

 

To give: 

 

 

du d  

 

And 

 

 
cos

sin

dx d

x

 






   

 

Which uses (7.5). Thus, from (7.4), we have: 

 

 
cos sin sin

u dx ux x du

d d      

 

 
 

 
 

 

And so, using (7.6) we have: 

 

 cos sin cosd        (7.12) 
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sin d    

Using integration by parts write: 

 

  sin d u d     x

d

 

Where: 

 

 sinu dx     

 

To give: 

 

 du d  

 

And 

 

 
sin

cos

dx d

x

 





 
   

 

Which uses (7.6). Thus, from (7.4), we have: 

 

 
   sin cos cos

u dx ux x du

d d      

 

   
 

 
 

 

And so, using (7.5) we have: 

 

 sin cos sind         (7.13) 
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 cos A d   

Using integration by substitution, we write u A    to give: 

 

 

1
du

d
du d




 

 
 

 

Thus: 

 

    cos cosA d u      du

(7.5): 

 co

We have: 

 

And since, using 

 

s sinu du u    

 

 

    cos sinA d A       (7.14) 
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 sin A d   

Using integration by substitution, we write u A    to give: 

 

 
1

du

d
du d




 

 
 

 

Thus: 

 

    sin sinA d u      du

 

And since, using (7.6): 

 

  sin cosu du u     

 

We have: 

 

    sin cosA d A      (7.15) 
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8. Appendix – Volume Integrals 
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