Structural Analysis IV

Virtual Work — Compound Structures
4th Year

Structural Engineering

2010/11

Dr. Colin Caprani

1 Dr. C. Caprani



Structural Analysis IV

Contents
1. INErOdUCHION coceicrrcenrrrecssssnnricssssnnnncsssssssnnesssssssscsssssssssssssssssssssssssssssssssssssssssssssans 4
L1 PUIPOSE ..ottt ettt ettt e et e e s emb e e e e e e e e abne e e anneeeeanes 4
2.  Virtual Work Development..........eeicceiccvnieccssssnnrecssssssnsesssssssssssssssssssssssssssssssssses 5
2.1  The Principle of Virtual WOork...........cccovieiiiiiiineece s 5
2.2 Virtual Work for DefleCtions...........ccooviiiiiiiiiiiie e 9
2.3 Virtual Work for Indeterminate StruCtUIES..........cocveveririenienieie e 10
2.4 Virtual Work for Compound StruCtUIes.........ccceveeiiriienie e 12
R JUN & 7: T Ul D5 €21 111 1] - 15
3L EXAMPIE Lo s 15
3.2 EXAMPIE 2 ..o 22
3.3 EXAMPIE 3. s 32
34 EXAMPIE 4 ..o 39
3.5 PrODIBMS ..o et 47
4. Advanced: Ring Beam EXamples......ccoeiicciiivnnniccsissnnnicssssnnsnecssssnsssscsssnssssces 51
4.1 EXAMPIE L. 51
4.2 EXAMPIE 2 ..o e 56
4.3 EXAMPIE 3 ..o 63
4.4 EXAMPIE 4 ..o e 71
45  EXAMPIE 5 ..o 80
4.6 Review Of EXamPpPIes 1 — 5. 101
5. Advanced: Grid EXamples.....cccccceieccrcrsnnreccssssnnnecsssssnnsecsssssassssssssssssssssssssssssss 112
5.1 EXAMPIE L. 112
5.2 EXAMPIE 2 ..o 118
5.3 EXAMPIE 3. 127
6. Appendix — Past Exam QUeStiONS ........ccocveierivnricsssnnccssnricscnsesssnssessssssessnsens 137
6.1  Sample Paper 2007 ........ccveiieiieiie e 137
6.2  Semester 1 EXam 2007 .......cocoviiiiiiiiieiie e 138

2 Dr. C. Caprani



Structural Analysis IV

7.

8.

6.3 Semester 1 Exam 2008.......
6.4 Semester 1 Exam 2009 .......
6.5 Semester 1 Exam 2010.......

Appendix — Trigonometric In
7.1 Useful Identities..................
7.2 Basic Results..........cccecvenee,
7.3 Common Integrals ..............

Appendix — Volume Integrals

L5714 1 KOO 142

3 Dr. C. Caprani



Structural Analysis IV

1. Introduction

1.1 Purpose

Previously we only used virtual work to analyse structures whose members primarily
behaved in flexure or in axial forces. Many real structures are comprised of a mixture
of such members. Cable-stay and suspension bridges area good examples: the deck-
level carries load primarily through bending whilst the cable and pylon elements

carry load through axial forces mainly. A simple example is a trussed beam:
= D

Dy, L\fé 2:5

'g ot $ —a—
#* = # < F

Other structures carry load through a mixture of bending, axial force, torsion, etc. Our

knowledge of virtual work to-date is sufficient to analyse such structures.
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2. Virtual Work Development

2.1 The Principle of Virtual Work
This states that:

A body is in equilibrium if, and only if, the virtual work of all forces acting on

the body is zero.

In this context, the word “virtual’ means ‘having the effect of, but not the actual form

of, what is specified’.
There are two ways to define virtual work, as follows.

1. Virtual Displacement:
Virtual work is the work done by the actual forces acting on the body moving

through a virtual displacement.

2. Virtual Force:
Virtual work is the work done by a virtual force acting on the body moving

through the actual displacements.

Virtual Displacements
A virtual displacement is a displacement that is only imagined to occur:
¢ virtual displacements must be small enough such that the force directions are
maintained.
o virtual displacements within a body must be geometrically compatible with
the original structure. That is, geometrical constraints (i.e. supports) and

member continuity must be maintained.
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Virtual Forces

A virtual force is a force imagined to be applied and is then moved through the actual

deformations of the body, thus causing virtual work.

Virtual forces must form an equilibrium set of their own.

Internal and External Virtual Work
When a structures deforms, work is done both by the applied loads moving through a
displacement, as well as by the increase in strain energy in the structure. Thus when

virtual displacements or forces are causing virtual work, we have:

SW
SW, — SW
SW

m

0
0
oW,

m

where
e Virtual work is denoted oW and is zero for a body in equilibrium;

e External virtual work is oW, and;

e Internal virtual work is oW, .

And so the external virtual work must equal the internal virtual work. It is in this

form that the Principle of Virtual Work finds most use.
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Application of Virtual Displacements

For a virtual displacement we have:

oW =0
oW, = oW,

ZFi '5Yi :Zpi'§ei

In which, for the external virtual work, F. represents an externally applied force (or
moment) and Jy, its virtual displacement. And for the internal virtual work, P
represents the internal force (or moment) in member i and Je, its virtual deformation.

The summations reflect the fact that all work done must be accounted for.

Remember in the above, each the displacements must be compatible and the forces

must be in equilibrium, summarized as:

Set of forces in

equilibrium

i l
ZFi'5yi :Zpi'5ei

T |

Set of compatible

displacements
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Application of Virtual Forces

When virtual forces are applied, we have:

oW =0
oW, = oW,

ZYi’5Fi :Zei 0B

And again note that we have an equilibrium set of forces and a compatible set of

displacements:

Set of compatible

displacements

l l
ZYi -oF :Zei -oP,

T |

Set of forces in

equilibrium

In this case the displacements are the real displacements that occur when the structure
Is in equilibrium and the virtual forces are any set of arbitrary forces that are in

equilibrium.
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2.2 Virtual Work for Deflections

Deflections in Beams and Frames

For a beam we proceed as:

1. Write the virtual work equation for bending:

oW =0
OWe = oW,
y-6F =) 6,-6M,

2. Place a unit load, oF , at the point at which deflection is required;

3. Find the real bending moment diagram, M, since the real curvatures are given

by:

4. Solve for the virtual bending moment diagram (the virtual force equilibrium
set), OM , caused by the virtual unit load.

5. Solve the virtual work equation:

6. Note that the integration tables can be used for this step.
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2.3 Virtual Work for Indeterminate Structures

General Approach

Using compatibility of displacement, we have:

L

L

lF
é’

3 1\N

o= fr
te

Final = Primary + Reactant

Next, further break up the reactant structure, using linear superposition:

6 = & X 6 fi
e
Reactant =  Multiplier X  Unit Reactant
We summarize this process as:
M=M’+aM!’

e M is the force system in the original structure (in this case moments);
e M? is the primary structure force system:;
e M" is the unit reactant structure force system.
The primary structure can be analysed, as can the unit reactant structure. Thus, the

only unknown is the multiplier, «, for which we use virtual work to calculate.
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Finding the Multiplier

For beams and frames, we have:

0- zj“" M g zj

Thus:

_ZJ'M é‘l\/l1

11
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2.4 Virtual Work for Compound Structures

Basis

In the general equation for Virtual Work:

ZYi -oF, :Zei xx

We note that the summation on the right hand side is over all forms of real
displacement and virtual force combinations. For example, if a member is in
combined bending and axial force, then we must include the work done by both

effects:

(évvi)Member:(e.é‘P) i +(e.5P)Bending
_PL

P+ j— SM dx
" EA

The total Virtual Work done by any member is:

(W) =P s [ MMkt LT+ oV
Member — EA El GJ GA,

In which Virtual Work done by axial, bending, torsion, and shear, respectively, is
accounted for. However, most members primarily act through only one of these stress
resultants, and so we commonly have only one term per member. A typical example
is when axial deformation of frame (bending) members is neglected; since the area is

large the contribution to virtual work is small.
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At the level of the structure as a whole, we must account for all such sources of
Virtual Work. For the typical structures we study here, we account for the Virtual

Work done by axial and flexural members separately:
oW =0

é\NE:é\NI

Zyi'5Fi :Zei 5P|+29| oM,

In which the first term on the RHS is the internal virtual work done by axial members

and the second term is that done by flexural members.

Again considering only axial and bending members, if a deflection is sought:

y-6F =) -6P+>.0-0M,

y.l:Z(%ji .5P, +ZH'\£|X]5MX dx

To solve such an indeterminate structure, we have the contributions to Virtual Work:

M=M°+aM:
P=P°+aP’

for the structure as a whole. Hence we have:
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oW =0
oW = oW,

ZYi -oF, :Zei 5P|+29| oM,

L
0-1=) %)_-5el+zj['\é'lx]5mxdx
i 0

0-3 (P0+a.§P1)L} '5F}1+Z_T[(Mg+aMi)]'5Mx N

EA

Hence the multiplier can be found as:

P°.5P!- L, cM°.sM!
ZEA, +Z-([Eli dx
(5P L,

> +ZIEIdx

Note the negative sign!

Though these expressions are cumbersome, the ideas and the algebra are both simple.

Integration of Diagrams
We are often faced with the integration of various diagrams when using virtual work
to calculate the deflections, etc. As such diagrams only have a limited number of

shapes, a table of “volume’ integrals is used.
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3. Basic Examples

3.1 Examplel

Problem

For the following structure, find:

(@) The force in the cable BC and the bending moment diagram;
(b) The vertical deflection at D.

Take EI =8x10°kNm* and EA=16x10° kN.

C 7
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Solution — Part (a)

This is a one degree indeterminate structure and so we must release one redundant.
We could choose many, but the most obvious is the cable, BC. We next analyze the
primary structure for the actual loads, and the unit virtual force placed in lieu of the

redundant;

— =

From the derivation of Virtual Work for indeterminate structures, we have:

O_Z(F;L‘lﬁeua ZFPLJ ZIM 5Midx+ ZI@W

We evaluate each term separately to simplify the calculations and to minimize

potential calculation error.
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Term 1:

This term is zero since P° is zero.

Term 2:

Only member BC contributes to this term and so it is:

1
Z oPL .53122.121
EA ) EA EA

Term 3:
Here we must integrate the bending moment diagrams. We use the volume integral

for the portion AD of both diagrams. Thus we multiply a triangle by a trapezoid:

> MM L a2 2(-4)(2)|

400/3
El

Term 4:

Here we multiply the virtual BMD by itself so it is a triangle by a triangle:

ZI (5|I\E/|Ii) dx = %[%(_4)(_4)(4)} _ %{3

With all terms evaluated the Virtual Work equation becomes:

24003 64/3

0=0+a« a
EA El El
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Which gives:

400/3
El _ 400

2 +64/3 6 El 64

EA EI EA

o =

Given that EI/EA=8x10°/16x10° = 0.5, we have:

a=— 0 547
6(0.5)+ 64

Thus there is a tension (positive answer) in the cable of 5.97 kN, giving the BMD as:

&1
gD

[T (bdm)
1

Note that this comes from:

M,=M°+a-6M =40+ (5.97)(-4)=16.1 kN
Mp=M®+a-6M =0+(5.97)(-2)=-11.9 kN
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Solution — Part (b)

Recalling that the only requirement on applying virtual forces to calculate real
displacements is that an equilibrium system results, we can apply a vertical unit force

at D to the primary structure only:

‘1
2

sm: [

o — b

RN

The Virtual Work equation useful for deflection is:

y-6F =>e 6P +>.6-6M,

L
5Dy.1=2(%) -SP, +ZJ[I\£|X]5I\/IX dx
! 0

Since 6P =0, we need only calculate the term involving the Virtual Work done by

the beam bending. This involves the volume integral of the two diagrams:

* Moo

&

o
14
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Note that only the portion AD will count as there is no virtual moment on DB. Thus

we have:

2 &1

I

However, this shape is not easy to work with, given the table to hand. Therefore we

9

recall that the real BMD came about as the superposition of two BMD shapes that are

easier to work with, and so we have:

I

q

A further benefit of this approach is that an equation of deflection in terms of the
multiplier « is got. This could then be used to determine « for a particular design

requirement, and in turn this could inform the choice of EI/EA ratio. Thus:
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Given o =5.97, we then have:

_160-8(5.97) 3741 _37.41

Dy = —x10° =4.68 mm
3EI El  8x10

The positive answer indicates that the deflection is in the direction of the applied

virtual vertical force and so is downwards as expected.

We can also easily work out the deflection at B, since it is the same as the elongation

of the cable:

PL (5.97)(2)

== . x10° =0.75 mm
EA 16x10

Draw the deflected shape of the structure.
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3.2 Example2

Problem

For the following structure, find:

(c) The force in the cable CD and the bending moment diagram;

(d) Determine the optimum EA of the cable for maximum efficiency of the beam.
Take EI =8x10° KNm? and EA=48x10° kN ..
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Solution — Part (a)

Choose the cable CD as the redundant to give:

< 4
v
MMMMS w/MMW A 1'1 2
& > £ ° A o 25

&‘. ll(({-u]{{f éﬂ‘

%‘1: [QMM

The equation of Virtual Work relevant is:

2
Co[PLY) L P L o EMCaM! (M)
O—Z[ EAji OP' +a Z[ A j oP +Z-([—EI dx + o Z-([—EI dx

We evaluate each term separately:
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Term 1:

This term is zero since P° is zero.

Term 2:

Only member CD contributes to this term and so it is:

1
Z oPL .53122.121
EA ) EA EA

Term 3:
Here we must integrate the bending moment diagrams. We use the volume integral

for each half of the diagram, and multiply by 2, since we have two such halves.

1
- O ZIM M = 2 [152(_1)(10)(2)}
PR S __5033
El
N s
o

Term 4:

Here we multiply the virtual BMD by itself:

Thus the Virtual Work equation becomes:
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Which gives:

2 503, .48

0=0+c- a
EA El El
50/3
El 50
a: =
2 +4/3 5 El 4
EA El EA

Given that EI/EA=8x10°/48x10° =0.167, we have:

Thus there is a tension (positive answer) in the cable of 10 kN, giving:

50
6(0.167)+ 4

4o
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As designers, we want to control the flow of forces. In this example we can see that
by changing the ratio EI/EA we can control the force in the cable, and the resulting
bending moments. We can plot the cable force and maximum sagging bending
moment against the stiffness ratio to see the behaviour for different relative

stiffnesses:

14 - —— Cable Tension (kKN)
—— Sagging Moment (kNm)

0.0001 0.001 0.01 0.1 1 10 100 1000 10000
Ratio EI/EA
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Solution — Part (b)

Efficiency of the beam means that the moments are resisted by the smallest possible
beam. Thus the largest moment anywhere in the beam must be made as small as

possible. Therefore the hogging and sagging moments should be equal:

t A B TA &
J—lay Ty p—t y  pEe Ty

M | ~ Mo
A\ = -+ m/"
7 Mw

We know that the largest hogging moment will occur at L/2. However, we do not

know where the largest sagging moment will occur. Lastly, we will consider sagging
moments positive and hogging moments negative. Consider the portion of the net

bending moment diagram, M (x), from O to L/2:

— M, %)

The equations of these bending moments are:
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P
MP(X)z—EX
MW(X):—gx%W?Lx

Thus:

The moment at L/2 is:

=5 ()30 -3l

~wl® wl* PL
4 8 4
_wLl® PL
s

Which is as we expected. The maximum sagging moment between 0 and L/2 is

found at:
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dl\/l(x):0
dx
wL
2 max
_L P
max_2 2W

Thus the maximum sagging moment has a value:

M (x )_W_L[L_ij_ﬂ(h_ijz_i(k_ij
o2\ \2 2w) 212 2w 2\2 2w

wl?  PL W(LZ 2PL PZJ PL P?
+ ——+

4 4 214 4w 4w 4 4w
_wL _PL_P°
8 4 8w

Since we have assigned a sign convention, the sum of the hogging and sagging

moments should be zero, if we are to achieve the optimum BMD. Thus:

M (x,,)+M (L/2)=0

wL> PL P? wl® PL
- — |+ ——1=0

8 4 8w 8 4
wLl® PL P?
—_ =
4 2 8w

R ({5

This is a quadratic equation in P and so we solve for P using the usual method:

0
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[

5_2 V4 8 8wL L
2 2\ 2 8
8w

=WL(2i\/§)

Since the load in the cable must be less than the total amount of load in the beam, that

Is, P <wL, we have:
P=wlL(2-+2)=0586uL
With this value for P we can determine the hogging and sagging moments:

wE _wL(z—ﬁ)L

M(L/2)=
(L/2)="3 ;
:WLZ(Z\/E_SJ
8
=-0.0214wL’
And:
M(Xmax)= wL: _ PL N P
8 4 8w

=+0.0214wL’
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Lastly, the location of the maximum sagging moment is given by:

L oL
22w
L WL(Z—\/E)
2w
=5(\/§—1)
2
=0.207L

For our particular problem, w=5 kN/m, L=4 m, giving:

P =0.586(5x4)=11.72 kN

M (X, ) =0.0214(5x 4?) =1.71 kNm

Thus, as we expected, P >10 kN, the value obtained from Part (a) of the problem.

Now since, we know P we now also know the required value of the multiplier, «.
Hence, we write the virtual work equations again, but this time keeping Term 2 in

terms of L, since that is what we wish to solve for:

50

6E+4
EA

_El _1( 50

TEA 6\11.72

a =11.72

4) =0.044

Giving EA=8x10°/0.044 =180.3x10° kN . This is 3.75 times the original cable area

—a lot of extra material just to change the cable force by 17%.
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3.3 Example 3

For the following structure:

1. Determine the tension in the cable AB;

2. Draw the bending moment diagram;

3. Determine the vertical deflection at D with and without the cable AB.
Take El =120x10° kNm? and EA=60x10° kN .

R

* |okA)

As is usual, we choose the cable to be the redundant member and split the frame up

as follows:

Primary Structure Redundant Structure
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We must examine the BMDs carefully, and identify expressions for the moments
around the arch. However, since we will be using virtual work and integrating one
diagram against another, we immediately see that we are only interested in the
portion of the structure CB. Further, we will use the anti-clockwise angle from

vertical as the basis for our integration.

Primary BMD
Drawing the BMD and identify the relevant distances:

Hence the expression for M° is:

M, =20+10(2sin8)=20(1+sin0)
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Reactant BMD

This calculation is slightly easier:

M, =1-(2-2cos6)=2(1-cosd)

Virtual Work Equation

As before, we have the equation:

O:Z[F;Ll.aeua ZVEALJ ZJM 5Mde+ Zf )

Term 1 is zero since there are no axial forces in the primary structure. We take each

other term in turn.

Term 2

Since only member AB has axial force:
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Term 3
Since we want to integrate around the member — an integrand ds - but only have the
moment expressed according to &, we must change the integration limits by

substituting:
ds=R-d@=2d6
Hence:

1 7r/2

M 5|\/|1
ZI ER.

80
== |

0
80 72'/.2
_E |

0

[ -2(1-cos0) ][ 20(1+sing) |2d6

(-1+cos@)(1+sind)dé

(-1-sin@+cosd +cosfsing)dd

To integrate this expression we refer to the appendix of integrals to get each of the

terms, which then give:

1 7/2
—0+cosf +sin 9—200520}

0

[—%+0+1—%(—1)}—[—0+1+0—ﬂ}
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Term 4

Proceeding similarly to Term 3, we have:

.[ [2(1-cos®)][ 2(1-cos6)|2d6

I (1— 2¢0s 6 + cos? H)d@
0

/2

Il
M| oo
S
|
N
2!
-}
oY
+
7\
N |
+
|
28
>
N
SN
N
L 1

0

Solution

Substituting the calculated values into the virtual work equation gives:

2 80(1-~« 8 (3r—7
0=0+a —+—| — |[+a-—
EA EI\ 2 El 4

And so:
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_80(1-x
EI\ 2

:2+8(37z—7)
EA EI\ 4

Simplifying:
_ 207-20
37z—7+E
EA
In this problem, EI/EA =2 and so:
a=227"2 _q65kn
3 —

We can examine the effect of different ratios of EI/EA on the structure from our
algebraic solution for «. We show this, as well as a point representing the solution
for this particular EI/EA ratio on the following graph:

20

« Factor

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Ratio EI/EA
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As can be seen, by choosing a stiffer frame member (increasing EIl) or by reducing
the area of the cable, we can reduce the force in the cable (which is just 1-«).

However this will have the effect of increasing the moment at A, for example:

45 -

40 |
T 35 -
pd
= 30
<
s 25 |
c
(O]
£ 20
=
g 15
©
o
m /O/
5 |
T T T T O T T T 1
0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Ratio EI/EA

Deflections and shear would also be affected.

Draw the final BMD and determine the deflection at D.
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3.4 Example 4

Problem
For the following structure:
1. draw the bending moment diagram;
2. Find the vertical deflection at E.
Take EI =120x10° KNm?* and EA=60x10° kN .

r-—l

-.t-r
S
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Solution

To begin we choose the cable BF as the obvious redundant, yielding:
3o

WA

p—

Virtual Work Equation

The Virtual Work equation is as before:

0=Z[Z}]i-6el+a-2[5;] ey Mo 5M*dx+aZI )

Term 1 is zero since there are no axial forces in the primary structure. As we have

done previously, we take each other term in turn.

Term 2
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Though member AB has axial force, it is primarily a flexural member and so we only

take account of the axial force in the cable BF:

SPILY) o, (12v2). 22
2% 1'53 ‘(F}'l‘ﬁ

Term 3
Since only the portion AB has moment on both diagrams, it is the only section that

requires integration here. Thus:

3 [ MM g L L a00)(2) ) |- 2o

Term 3

Similar to Term 3, we have:

Solution

Substituting the calculated values into the virtual work equation gives:

0=0+«

222 2202 43
EA

El El

Thus:
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220/2/El
oO=—F=—"—
22 43
EA EI

And so:

22042

S El 4
22— 42
\/_EA 3

Since;:

El _120x10°
EA  60x10°

We have:

2202
4
(2\/2)2+3

=+40.46

Thus the force in the cable BF is 40.46 kN tension, as assumed.

The bending moment diagram follows from superposition of the two previous

diagrams:
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To find the vertical deflection at E, we must apply a unit vertical load at E. We will
apply a downwards load since we think the deflection is downwards. Therefore we

should get a positive result to confirm our expectation.

We need not apply the unit vertical force to the whole structure, as it is sufficient to

apply it to a statically determinate sub-structure. Thus we apply the force as follows:
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For the deflection, we have the following equation:

y-6F =Yg 0P +>.6-6M,

L
5Ey'1=2(%j_ 6P, +ZI[E;]5MX dx
I 0

However, since 6P =0, we only need calculate the second term:

For AB we have:

i[ '\é'lx } OM, dx = %B(zoo +142.8)(4)(2)} _ %

For BC we have:

1600

[l\éf]amxdx=%[(2°°)(4)(2)] El

O ey O
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For CD, we have the following equations for the bending moments:

25
\eo| W
20 B
M () =(100)(2sin0) SM (0)=2+(1)(2sin8)
=200sind =2+2sing

Also note that we want to integrate around the member — an integrand ds - but only
have the moment expressed according to &, we must change the integration limits by
substituting:

ds=R-d0=2d6

Thus we have:

D M 1 7/2
J[Elx]gmxdx__lj (200sin6)(2 +2sin§) - 2d6
C 0

:8—.[ sin@ + sin? 0 do
0

z 7/2
:800“5m9d9+ _[sm 6do
0
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Taking each term in turn:

/2

'[ sin@ dé = [—cos«9]g/2 =-0-(-1)=+1
0

/2 /2 B
jSinzedez[Q—lsinze} =F—3(1)2}—[0-1(o)2}:_” 1
. 2 4 4 4 4 4

0

Thus:

OO0

M, -5MXdX:800(1+7r_1):2007[+600
El El 4 El

Thus:

1371.2 1600 200x +600 4200
= + + =+

S
¥ El El El El

Thus we get a downwards deflection as expected. Also, since El =120x10° kNm?,

we have:

. :ﬂos:% mm
120x10
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3.5 Problems

Problem 1

For the following structure, find the BMD and the vertical deflection at D. Take
El =8x10°kNm? and EA=16x10° kN.

(Ans. o =7.8 for BC, &, =1.93mm)

ol f}
A wa
JLZ J(,’Z. 1 K= ‘,-

Problem 2

For the following structure, find the BMD and the vertical deflection at C. Take
El =8x10°kNm? and EA=16x10° kN.

(Ans. a =25.7 for BD, &, =25 mm )

lo&n)/w\
ANAATLAAA C.

& 3

D

'?..I:‘Z-J,
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Problem 3
For the following structure, find the BMD and the horizontal deflection at C. Take
El =8x10°kNm? and EA=16x10° kN.

(Ans. a =47.8 for BD, o, =44.8 mm —)

Problem 4

For the following structure, find the BMD and the vertical deflection at B. Take P =
20 kN, El =8x10°kNm? and EA=16x10° kN..
(Ans. o =14.8 for CD, &, =14.7 mm)
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Problem 5
For the following structure, find the BMD and the vertical deflection at D. Take
El =50x10°kNm? and EA=20x10° kN

(Ans. @ =100.5 for BC, 3, =55.6 mm )

Eolen)

‘
P

Problem 6
Analyze the following structure and determine the BMD and the vertical deflection at
D. For ABCD, take E =10 kN/mm?, A=12x10* mm? and | =36x10° mm*, and for
AEBFC take E =200 kN/mm? and A=2x10* mm?®.

(Ans. a =109.3 for BF, &, =54.4 mm )
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Problem 7

Analyze the following structure. For all members, take E =10 kN/mm?, for ABC,
A=6x10" mm? and | =125x10" mm*; for all other members A=1000 mm?.

(Ans. a =72.5 for DE)

f
(&

& N >  —
k4 < S
#* = =+ b
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4. Advanced: Ring Beam Examples

4.1 Example 1

Problem

For the quarter-circle beam shown, which has flexural and torsional rigidities of El

and GJ respectively, show that the deflection at A due to the point load, P, at A is:

_PR* 7 PR3£37z—8)
4

5 .
MOEL 40 G
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Solution
The point load will cause both bending and torsion in the beam member. Therefore
both effects must be accounted for in the deflection calculations. Shear effects are

ignored.

Drawing a plan view of the structure, we can identify the perpendicular distance of
the force, P, from the section of consideration, which we locate by the angle ¢ from

the y-axis:

The bending moment at C is P times the perpendicular distance \AC\, called m. The
torsion at C is the force times the transverse perpendicular distance \CD\, called t.

Using the triangle ODA, we have:
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sin¢9:m S.m=Rsind

R
cosﬁz@ ..|OD|=Rcosé

The distance |CD|, or t, is R —|OD|, thus:

t=R-|OD|
=R -Rcosé
=R(1-cos8)

Thus the bending moment at point C is:

M (9) =Pm
= PRsiné
The torsion at C is:
T (6) =Pt
=PR(1-cosd)

Using virtual work, we have:

oW =0

SW, = W,

5M-§F=I£%-5M(E+Ié%~5Tds

53
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This equation represents the virtual work done by the application of a virtual force,
oF , in the vertical direction at A, with its internal equilibrium virtual moments and
torques, oM and OT and so is the equilibrium system. The compatible
displacements system is that of the actual deformations of the structure, externally at

A, and internally by the curvatures and twists, M/EI and T/GJ .

Taking the virtual force, 6F =1, and since it is applied at the same location and

direction as the actual force P, we have, from equations (4.1) and (4.2):
SM (6)=Rsind (4.4)
5T (0)=R(1-cos0) (4.5)

Thus, the virtual work equation, (4.3), becomes:

5, -1=ij|v| .M ds+ijT-5T ds
El GJ
(4.6)

/2 72

=% ! [PRsinH][Rsin@]RdéHé ! [PR(1-cos8) ][ R(1-cos@)|RdE

In which we have related the curve distance, ds, to the arc distance, ds = Rdé, which

allows us to integrate round the angle rather than along the curve. Multiplying out:

3 7/2 PR3 7/2 9
[sin?0d6+—— [ (1-cos6) do (4.7)
) GJ

0

PR
O =

Considering the first term, from the integrals’ appendix, we have:
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7/2 /2
.[sinzé’dé’— Q—l |n29}
’ 2 4
T 1
S 0-0 4.8
(5-30)-c-0] 4
_
4
The second term is:
7/2 /2
I(l—cose)zdez j(l—ZCOSH-I—COSZQ)dQ
0 0
7/2 7/2 7/2 (49)

- jlde—zj cosd dé + jcoszede
0 0 0

Thus, from the integrals in the appendix:

/2 7/2

j(l—cos@) do= [9]”/2 [sm@]”/2 B+%sin20}

0
0 0

:ng_(o)}—Z[(l)—(O)]+KZ+% O) (°+°)} (4.10)

LA
2 4
37 -8

4

Substituting these results back into equation (4.7) gives the desired result:

3 3 _
5 = PR*7 PR (37[ 8) (4.11)
" El 4 GI\ 4
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4.2 Example 2

Problem

For the quarter-circle beam shown, which has flexural and torsional rigidities of El
and GJ respectively, show that the deflection at A due to the uniformly distributed

load, w, shown is:

56 Dr. C. Caprani



Structural Analysis IV

Solution

The UDL will cause both bending and torsion in the beam member and both effects

must be accounted for. Again, shear effects are ignored.

B‘zf/// X o

N\
[/E
w-RAH
Drawing a plan view of the structure, we must identify the moment and torsion at

some point C, as defined by the angle ¢ from the y-axis, caused by the elemental

load at E, located at ¢ from the y-axis. The load is given by:

Force = UDL x length
=w-Rd¢g
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The bending moment at C is the load at E times the perpendicular distance \DE\,

labelled m. The torsion at C is the force times the transverse perpendicular distance

ICD, labelled t. Using the triangle ODE, we have:

sin(0—¢):% ..m=Rsin(0-¢)
cos(e—gzﬁ):@ ..|OD|=Rcos(6 - ¢)
The distance t is thus:
t=R—|OD|
=R —-Rcos(6—-¢)

=R|1-cos(6-¢)|

The differential bending moment at point C, caused by the elemental load at E is
thus:

dM (&) = Force x Distance
=[wRdg]xm
=[wRdg][ Rsin(6-¢) |
=WR’sin(6-¢)d¢

Integrating to find the total moment at C caused by the UDL from A to C around the

angle 0 to & gives:
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M (6) = [am (0)
::ZWstin(Q—qﬁ)dgzﬁ

—wR? [ sin(0- $)dg

¢=

In this integral @ is a constant and only ¢ is considered a variable. Using the identity

from the integral table gives:

M (6)=wR*[cos(0-¢)]
=WR’[ (cos0) - cosd |

And so:
M (0)=wR?(1-cos0) (4.13)
Along similar lines, the torsion at C caused by the load at E is:

dT (6)=[wRdg]xt
=[wRdg]{R[1-cos(0-4)]}
=WR?[1-cos(0—¢) |dg

And integrating for the total torsion at C:
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T(6)=]dT(9)

::;ijz[l_cos(e—m] dg
- WRZT[l— cos(6—¢) |dg

$=0

¢=0 #=6
:WRZ{jldgb— | cos(6—¢)d¢}
$=0 $=0
Using the integral identity for cos(6—¢) gives:

T(60)=wR{[g]; ~[~sin(0-9) ]}
=WR* {6 +[sin0—sin o]}

And so the total torsion at C is:
T(0)=wR*(6-sin0) (4.14)

To determine the deflection at A, we apply a virtual force, 6F, in the vertical
direction at A. Along with its internal equilibrium virtual moments and torques, 6M
and oT and this set forms the equilibrium system. The compatible displacements
system is that of the actual deformations of the structure, externally at A, and

internally by the curvatures and twists, M/EIl and T/GJ . Therefore, using virtual

work, we have:
oW =0

SW, = SW, (4.15)

S - OF :j%-alvl ds+_[GT—J-5T ds
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Taking the virtual force, oF =1, and using the equation for moment and torque at

any angle @ from Example 1, we have:

SM (6)=Rsind (4.16)
5T (0)=R(1-cos0) (4.17)
Thus, the virtual work equation, (4.15), using equations (4.13) and (4.14), becomes:

1 1
§Ay'1:EJM .6M ds+ajT-5T ds

72

[ [WR?(1-cos6) |[Rsin@]Rdg (4.18)

1
El
z/2

+é [ [WR?(0-sin6)][R(1-cos0)|Rdg

o

In which we have related the curve distance, ds, to the arc distance, ds=Rd&

allowing us to integrate round the angle rather than along the curve. Multiplying out:

4 72

ay = V\IIEI I(sin@—sinecose)de
0 4.19
WR* ¢ o)

j (6 —sin@—0Ocos +cosPsing)do

0

GJ

Using the respective integrals from the appendix yields:
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/2

4
Opy = wR [—cose+1c0529}
I 4 0

4 2

/2
+ ng {H—Jr cosd —(6fsind+coso) —%00529}

SR

+WR4K’Lo—(fhOj—%(‘l)j‘(o”_(o”)_%ﬂ

GJ || 8 2
_WRY[1
El | 2

WR*| 72 7 1 1

+ — =+

GJ| 8 2 4 4

Writing the second term as a common fraction:

WR* 1 WR*(7z%—-4r+4
Ay =t
El 2 GJ

8

And then factorising, gives the required deflection at A:

wr* 1 wr* (72-2)
ay = =+ : (4.20)
El 2 GJ 8
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4.3 Example 3

Problem
For the quarter-circle beam shown, which has flexural and torsional rigidities of El
and GJ respectively, show that the vertical reaction at A due to the uniformly

distributed load, w, shown is:

A

y sz{ 4B +(z-2) }

2p7 +2(37-8)
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Solution

This problem can be solved using two apparently different methods, but which are
equivalent. Indeed, examining how they are equivalent leads to insights that make
more difficult problems easier, as we shall see in subsequent problems. For both
approaches we will make use of the results obtained thus far:

e  Deflection at A due to UDL.:

_WR' 1 wR' (7-2)

: 4.21
OB 2 G 8 (4.21)
e  Deflection at A due to point load at A:
3 3 _
5. = PR* 7 PR (37[ 8 (4.22)
El 4 G 4

Using Compatibility of Displacement

The basic approach, which does not require virtual work, is to use compatibility of
displacement in conjunction with superposition. If we imagine the support at A
removed, we will have a downwards deflection at A caused by the UDL, which

equation (4.21) gives us as:

» WR' 1 wR' (7-2)
5A = R .
* El 2 Gl 8

(4.23)

As illustrated in the following diagram.
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Since in the original structure we will have a support at A we know there is actually
no displacement at A. The vertical reaction associated with the support at A, called V,

must therefore be such that it causes an exactly equal and opposite deflection, &, , to

that of the UDL, &, , so that we are left with no deflection at A:

S, +5, =0 (4.24)

Of course we don’t yet know the value of V, but from equation (4.22), we know the

deflection caused by a unit load placed in lieu of V:

, _LR 7z 1R (3;;-8) (4.25)

TR 4 Gl 4
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This is shown in the following diagram:

Using superposition, we know that the deflection caused by the reaction, V, is V times

the deflection caused by a unit load:

5=V -6, (4.26)

Thus equation (4.24) becomes:

5% +V -8 =0 (4.27)

Which we can solve for V:
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0
_ Oy

V=-—-=" 4.28
5, o

If we take downwards deflections to be positive, we then have, from equations(4.23),
(4.25), and (4.28):

(WR“ 1 R _(7:—2)2}
El 2 GJ 8
V=— (4.29)

1R 7 1-R(37-8
El 4 GJ\ 4

The two negative signs cancel, leaving us with a positive value for V indicating that it

Is in the same direction as the unit load, and so is upwards as expected. Introducing

yij :Cé—‘: and doing some algebra on equation (4.29) gives:

1,1 (z-2) L.LL(%—S) b
El 2 pEI 8 El 4 pEI 4

R 1+1.<7f—2)2Hz+1(3ﬂ—8ﬂ1
2 p 8 4 p 4

_url 4P (z-2) X_ﬂﬁ+(37z—8)}l
8f . 4p

=WR 4’8+(7[_2)2 x_ 8p }
83 | 27 +2(37-8)

And so we finally have the required reaction at A as:
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VA:WR( 4p+(r=2) ] (4.30)
2ﬂ7z+2(37z—8)

Using Virtual Work

To calculate the reaction at A using virtual work, we use the following:

e  Equilibrium system: the external and internal virtual forces corresponding to a
unit virtual force applied in lieu of the required reaction;

e  Compatible system: the real external and internal displacements of the original
structure subject to the real applied loads.

Thus the virtual work equations are:

SW =0
SW, = oW, (4.31)
Sy -OF = [K-0M ds+[4-0T ds

At this point we introduce some points:

e  The real external deflection at A is zero: 0,,=0;

e  The virtual force, 6F =1;

: : M
e The real curvatures can be expressed using the real bending moments, « :E;

e  The real twists are expressed from the torque, ¢ = CT—J

These combine to give, from equation (4.31):

0-1:JT%}-5M ds+Hg—J-5T ds (4.32)
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Next, we use superposition to express the real internal ‘forces’ as those due to the real
loading applied to the primary structure plus a multiplier times those due to the unit

virtual load applied in lieu of the reaction:

M=M®+aM* T=T°+aT" (4.33)

Notice that SM =M* and 6T =T*, but they are still written with separate notation to

keep the ideas clear. Thus equation (4.32) becomes:

LI (M® + aM? LI(T? + aT?

Oz_[ (—) oM ds+J' (—) -OT ds
) El ' GJ

(4.34)

L 0 L 1 L0 L 1

osz—-(SM ds+a-jM—-5M ds+jT—-5T ds+a-jT—-5T ds
. El . El 5 GJ 5 GJ

And so finally:

_ - i
j'\él-m ds+I£J-5T ds
a:—:OL 0 = (435)

M* LTl
I—-5M ds+j—-5T ds
4 El ) GJ

At this point we must note the similarity between equations (4.35) and (4.28). From
equation (4.3), it is clear that the numerator in equation (4.35) is the deflection at A of
the primary structure subject to the real loads. Further, from equation (4.15), the

denominator in equation (4.35) is the deflection at A due to a unit (virtual) load at A.

Neglecting signs, and generalizing somewhat, we can arrive at an ‘empirical’

equation for the calculation of redundants:
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of primary structure alon
, & due to actual loads } primary g (4.36)

& due to unit redundant line of action of redundant

Using this form we will quickly be able to determine the solutions to further ring-

beam problems.

The solution for « follows directly from the previous examples:

e  The numerator is determined as per Example 1;

e  The denominator is determined as per Example 2, with P =1.

Of course, these two steps give the results of equations (4.23) and (4.25) which were
used in equation (4.28) to obtain equation (4.29), and leading to the solution, equation
(4.30).

From this it can be seen that compatibility of displacement and virtual work are
equivalent ways of looking at the problem. Also it is apparent that the virtual work
framework inherently calculates the displacements required in a compatibility
analysis. Lastly, equation (4.36) provides a means for quickly calculating the
redundant for other arrangements of the structure from the existing solutions, as will

be seen in the next example.
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4.4 Example 4

Problem
For the structure shown, the quarter-circle beam has flexural and torsional rigidities
of El and GJ respectively and the cable has axial rigidity EA, show that the tension in

the cable due to the uniformly distributed load, w, shown is:

T =WR[4,B+(7I—2)2]{27Z,B+2(37[-8)+8£.%}
y

_EA

GJ
where f=— and y=—.
p=grandr=4q
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Solution

For this solution, we will use the insights gained from Example 3, in particular
equation (4.36). We will then verify this approach using the usual application of

virtual work. We will be choosing the cable as the redundant throughout.

Empirical Form

Repeating our ‘empirical’ equation here:

(4.37)

o due to actual loads of primary structure along
a =
o due to unit redundant line of action of redundant

We see that we already know the numerator: the deflection at A in the primary
structure, along the line of the redundant (vertical, since the cable is vertical), due to

the actual loads on the structure is just the deflection of Example 1:

_WR* 1 wR’ (z-2)

O, = + : 4.38
YOEI 2 G 8 (4.38)

This is shown below:
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Next we need to identify the deflection of the primary structure due to a unit

cT —
&8

= 4 1
! R
__72’

2 A v

redundant, as shown below:

The components that make up this deflection are:

e  Deflection of curved beam caused by unit load (bending and torsion);

e  Deflection of the cable AC caused by the unit tension.

The first of these is simply the unit deflection of Example 3, equation (4.25):

5, (beam) =

(4.39)

1R 7 1-R°(37-8
El 4 GJ\ 4

The second of these is not intuitive, but does feature in the virtual work equations, as

we shall see. The elongation of the cable due to a unit tension is:

74 Dr. C. Caprani



Structural Analysis IV

1.L
S5t (cable)==— 4.40
\ (cable) ==~ (4.40)

Thus the total deflection along the line of the redundant, of the primary structure, due

to a unit redundant is:

8,, =6, (beam)+ &5, (cable)
_LR 7z 1R(37-8) 1L (4.41)
El 4 GJ{ 4 EA

Both sets of deflections (equations (4.39) and (4.41)) are figuratively summarized as:

And by making &, =T5,

Ay !

where T is the tension in the cable, we obtain our

compatibility equation for the redundant. Thus, from equations (4.37), (4.38) and
(4.41) we have:

75 Dr. C. Caprani



Structural Analysis IV

El 2 GJ 8

{WR4_1+WR4.(7Z—2)2}

= 4.42
1-R3.7r+1-R3(37z—8j+1-L (4.42)
El 4 GJ 4 EA
Setting S :(é—‘: and y = % and performing some algebra gives:
B 2 -1
Towg L1 Ll [4on L (anoE), L
El 2 pEI 8 El 4 pBEI\ 4 yREI
— > -1
—WR 4,8+(7r—2) ﬁ7I+(37z—8)+ L (4.43)
84 . 4 yR’
. - 8pL,/ T
_ [4p(a) ] Prr 28 ﬂ%Rs
. 8/ 8/
Which finally gives the required tension as:
) g L]
T =wR[4ﬂ+(7z—2) :||:27Z'ﬂ+2(372'—8)+8—-ﬁ:| (4.44)
Y

Comparing this result to the previous result, equation (4.30), for a pinned support at

A, we can see that the only difference is the term related to the cable: 82-%. Thus

/4
the ‘reaction’ (or tension in the cable) at A depends on the relative stiffnesses of the
R° R L :
beam and cable (through the —, —— and — terms inherent through y and g).
El  GJ EA

This dependence on relative stiffness is to be expected.
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Formal Virtual Work Approach

Without the use of the insight that equation (4.37) gives, the more formal application

of virtual work will, of course, yield the same result. To calculate the tension in the

cable using virtual work, we use the following:

e  Equilibrium system: the external and internal virtual forces corresponding to a
unit virtual force applied in lieu of the redundant;

e  Compatible system: the real external and internal displacements of the original
structure subject to the real applied loads.

Thus the virtual work equations are:

SW =0
SW, = oW, (4.45)
Sy -OF = [x-0M ds+[¢-6T ds+ Y e-oP

In this equation we have accounted for all the major sources of displacement (and
thus virtual work). At this point we acknowledge:
e There is no external virtual force applied, only an internal tension, thus 6F =0;
e  The real curvatures and twists are expressed using the real bending moments and
torques as K'Z% and ¢=£—J respectively;
e The elongation of the cable is the only source of axial displacement and is
PL

written in terms of the real tension in the cable, P, as e :a.

These combine to give, from equation (4.45):

L L
5Ay-O:J‘{M]5M ds+J'{L]5T s+ 5P (4.46)
LEI 4KeX EA

As was done in Example 3, using superposition, we write:
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M=M"+aM’ T=T’+aT" P=P°+aP" (4.47)

However, we know that there is no tension in the cable in the primary structure, since
it is the cable that is the redundant and is thus removed, hence P° =0. Using this and

equation (4.47) in equation (4.46) gives:

O—WM]ﬁM ds+j[@}ﬂ ds+(aEA)L 6P (4.48)

Hence:
L 0 L 1
O:IM—-&\A ds +a-jM—.5M ds
= ) El
LTO L T]_
+I—-5T ds +a-J'—-5T ds (4.49)
2 GJ 2 GJ
1
+a-E-5P
EA
And so finally:

L 0 L0
J'M-cSM ds+IT-5T ds
, El - GJ

a=—
L 1 L 1 1

jM-cSM ds+jT-5T ds+ . 5P

) El ) GJ

(4.50)

EA

Equation (4.50) matches equation (4.35) except for the term relating to the cable.

Thus the other four terms are evaluated exactly as per Example 3. The cable term,
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1
EﬁP, is easily found once it is recognized that P*=6P =1 as was the case for

the moment and torsion in Example 3. With all the terms thus evaluated, equation

(4.50) becomes the same as equation (4.42) and the solution progresses as before.

The virtual work approach yields the same solution, but without the added insight of

the source of each of the terms in equation (4.50) represented by equation (4.37).
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4.5 Example5

Problem

For the structure shown, the quarter-circle beam has the properties:
e torsional rigidity of GJ;

o flexural rigidity about the local y-y axis El, ;

o flexural rigidity about the local z-z axis El, .

The cable has axial rigidity EA. Show that the tension in the cable due to the

uniformly distributed load, w, shown is:

T- WRF’B +ﬂ(j/z§_ 2) }{z(1+%j+%(3n—8)+ 8\@}1

/4

where ﬂ:G—J, y:E and A= El, :
El, El, El

Y
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C 4
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Solution
We will carry out this solution using both the empirical and virtual work approaches
as was done for Example 4. However, it is in this example that the empirical

approach will lead to savings in effort over the virtual work approach, as will be seen.

Empirical Form

Repeating our empirical equation:

o= - (4.51)
o due to unit redundant

o due to actual loads of primary structure along
line of action of redundant

We first examine the numerator with the following y-z axis elevation of the primary

structure loaded with the actual loads:

Noting that it is the deflection along the line of the redundant that is of interest, we

can draw the following:
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The deflection §,,, which is the distance |AA' is known from Example 2 to be:

s _WR' 1 wR' (z-2)

+ . 4.52
OB 20 G 8 (4:52)

It is the deflection |AA"| that is of interest here. Since the triangle A-A’-A’" is a 1-1-

J2 triangle, we have:

o
5 = 4.53

And so the numerator is thus:

wR*  wR' (7-2)

O, = + :
*To 2Bl Gl 82

(4.54)
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To determine the denominator of equation (4.51) we must apply a unit load in lieu of

the redundant (the cable) and determine the deflection in the direction of the cable.

Firstly we will consider the beam. We can determine the deflection in the z- and y-
axes separately and combine, by examining the deflections that the components of the

unit load cause:

: : 1 : o
To find the deflection that a force of — causes in the z- and y-axes directions, we

NG

will instead find the deflections that unit loads cause in these directions, and then

divide by /2.

Since we are now calculating deflections in two orthogonal planes of bending, we

must consider the different flexural rigidities the beam will have in these two
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directions: EIl, for the horizontal plane of bending (vertical loads), and EI, for loads

in the x-y plane, as shown in the figure:

2|
Y

A
Vo2

First, consider the deflection at A in the z-direction, caused by a unit load in the z-
direction, as shown in the following diagram. This is the same as the deflection

calculated in Example 1 and used in later examples:

(4.55)

., 1.R* = 1.R°(3r-8
Az EI —

TEL 4 GJ\ 4

Y
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L
A

Considering the deflection at A in the y-direction next, we see from the following

diagram that we do not have this result to hand, and so must calculate it:
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Looking at the elevation of the x-y plane, we have:

The lever arm, m, is:
m=Rsind (4.56)
Thus the moment at point C is:
M(#)=1-m=1-Rsind (4.57)

Using virtual work:
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oW =0
SW, = 6W, (4.58)
1.5, =[x-6M ds

In which we note that there is no torsion term, as the unit load in the x-y plane does

not cause torsion in the structure. Using x = M/EI, and ds=Rdé:

/2 M
1.6, = j F(SM Rd& (4.59)

z

Since M =6M =Rsin#, and assuming the beam is prismatic, we have:

R® "2
1.6, :Hlsmzede (4.60)

z

This is the same as the first term in equation (4.7) and so immediately we obtain the

solution as that of the first term of equation (4.11):

R 7«
,iy=E| " (4.61)

In other words, the bending deflection at A in the x-y plane is the same as that in the
z-y plane. This is apparent given that the lever arm is the same in both cases.
However, the overall deflections are not the same due to the presence of torsion in the

z-y plane.

Now that we have the deflections in the two orthogonal planes due to the units loads,

: o 1
we can determine the deflections in these planes due to the load —:

2
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Rl 1 7~ 1 (3r-8
s T | — .2, 4.62
A \/Z{EIY 4 GJ( 4 ﬂ (4.62)
R 1 ~«
147 _
i ﬁ{ﬁ z} 459

The deflection along the line of action of the redundant is what is of interest:

Looking at the contributions of each of these deflections along the line of action of

the redundant:

) _ Ay
Sar \;EA ﬂf Snl"fpf //&\

RC N
3:\(6‘5( Y‘J — *R"

A4

From this we have:
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AE\:i-éj(f

V2
1 R 1 =~ 1(3z-8
=—- e 4.64
\/E\/E{EIY 4 GJ( 4 H (469
R 1 N 1 (37[—8)
2|El, 4 GJ 4
1

S, |AD|=—=5%"

V2

1 R| 1 «
:\/E.\/E{EIZ.Z} (4.65)

_Rl1
2| El, 4

Thus the total deflection along the line of action of the redundant is:

§AZ

8y.s = O |AE|+ 8, |AD|

Az/4

R Lz L{aoE) RIL s (466)
~2|El, 4 GI 4 2| El 4

This gives, finally:

Y

PR i R ) (3”_8j (4.67)
2|4 Bl EL) GIL 4

To complete the denominator of equation (4.51), we must include the deflection that

the cable undergoes due to the unit tension that is the redundant:
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1L
e=——
EA

_RV2

" EA

(4.68)

The relationship between R and L is due to the geometry of the problem — the cable is

at an angle of 45°.

Thus the denominator of equation (4.51) is finally:

3 J—
PSRN A P (37’ 8j+ 2;/5 (4.69)
204 El, EL) GIl 4 ) REA

Y

The solution for the tension in the cable becomes, from equations (4.51), (4.54) and
(4.69):

Jo1 1 (z-2)
"R |:2\/§EI+GJ. 8\/2 }

T= (4.70)
R~ 1 1 1(37:—8) 242
—| = + + +
24\ EI, EI.) GI\ 4 R’EA
Using ,B:G—J, 7/:E and 1= El, , We have:
El, El, El,
2
T-wr| % 4 1 (z=2)
22EI,  BEl, 82
(4.71)

o1 1 1 (37z—8] 2 T
x| = + + +
g\ El,  2EIl, | pEI | 8 RZEI
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Continuing the algebra:

o] o B 1) 4(3mc8), ]

=WR_4'B+(7Z_2)2}{£(1+1J+i(372'—8)+ 82 }l

(4.72)

842 8l 1) 88 8yR?

Which finally gives the desired result:

 [ap+(x-2y AT DN, N
T—WR{ ﬂ\/E }{7[(1 /1) ﬂ(?)ﬂ' 8) } (4.73)

Formal Virtual Work Approach
In the empirical approach carried out above there were some steps that are not
obvious. Within a formal application of virtual work we will see how the results of

the empirical approach are obtained “naturally’.

Following the methodology of the formal virtual work approach of Example 4, we

can immediately jump to equation (4.46):

L L
§Ay-0:j{%]5l\/l ds+j{£—J]5T ds+%-§P (4.74)
0

0

For the next step we need to recognize that the unit redundant causes bending about

both axes of bending and so the first term in equation (4.74) must become:

L L L
I{M]am ds= | M, .M, ds+ | M, .M, ds (4.75)
)| EI )| EI )| EL
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In which the notation M, and M, indicate the final bending moments of the actual

structure about the Y-Y and Z-Z axes of bending respectively. Again we use

superposition for the moments, torques and axial forces:

M, =M?+aM:
M, =M’ +aM}
T=T +qT!
P=P°+qP

(4.76)

We do not require more torsion terms since there is only torsion in the z-y plane. With

equations (4.75) and (4.76), equation (4.74) becomes:

93
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At this point we recognize that some of the terms are zero:

e There is no axial force in the primary structure since the cable is “cut’, and so
P°=0;

e There is no bending in the x-y plane (about the z-z axis of the beam) in the

primary structure as the loading is purely vertical, thus M, =0.

Including these points, and solving for « gives:

0 Y

L 0 Lo
&-5MY ds+'[T-5T ds
El ) GJ

(4.79)

o=-
L 1 L 1 L 1 1
jMY-amY ds+jMZ-5MZ ds+jT-5T ds+ . 5P
)El, ) El ) GJ EA

We will next examine this expression term-by-term.

L 0
J‘ﬁﬁMY ds
0 IY

For this term, M. are the moments caused by the UDL about the y-y axis of bending,

as per equation (4.13):

M, (0) =wR?*(1-cos8) (4.80)

Y

oM, are the moments about the same axis caused by the unit redundant. Since this

redundant acts at an angle of 45° to the plane of interest, these moments are caused

by its vertical component of i. From equation (4.4), we thus have:

NG

5MY(9):—iRsin9 (4.81)

2

94 Dr. C. Caprani



Structural Analysis IV

Notice that we have taken it that downwards loading causes positive bending

moments. Thus we have:

L' MO 1 & 1
Yy 5M, ds = J[sz(l—cose)}[——Rsine} ds
VeI, El, } V2
o (4.82)
:_JVEVEl [ (sing-sinocoso) Rdg
Y O

In which we have used the relation ds=Rdé#. From the integral appendix we thus

have:
L MO 4 o/ 7/2
J‘E_Y.g Yds:—\/_ [—cosé’]0 —[——00826’}
0 =Y 3Y 0 (4.83)
WR 1
=— —1(0)=(1) |+=|(-1)—(1
Bt O-@]+3[0-0]
And so finally:
L 0 4
M, WR
—.6M, ds =— 4.84
JEL, 2J2El, 59
L 0
IT—-éT ds
2 GJ

The torsion caused by the UDL in the primary structure is the same as that from
equation (4.14):

T°(0)=wR?(0—sin0) (4.85)
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Similarly to the bending term, the torsion caused by the unit redundant is 1 that of

V2

the unit load of equation (4.17):

5T (6) = —=R(1-cos) (4.86)

2

Again note that we take the downwards loads as causing positive torsion. Noting
ds =Rdé# we thus have:

TTO Mds—ij sine)][—iR(l—cose)} Rd6
) GJ Gl J2
- (4.87)
—\/;;J I(e—sine)(l—cosé’)de

This integral is exactly that of the second term in equation (4.19). Hence we can take

its result from equation (4.20) to give:

2
L0 4 (=2
T ST ds=__WR (7*-2) (4.88)
)G J2G1 8

L 1
My -OM, ds
El,

0
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For this term we recognize that M, =M, and are the moments caused by the %

component of the unit redundant in the vertical direction and are thus given by

equation (4.1):

L 1 )
oM, = MY(Q):ﬁRsme (4.89)
Hence this term becomes:
L 1 7/2
IMY SM, j Rsné’ iRsiné’ Rd@
o EI l, % J2
- (4.90)
J'sm 0deo
y 0

From the integral tables we thus have:

1
L. 0M

O ey
<

RE[o 1. Tz

‘ ———sin20
2El, 2 4 0
(4.91)

g |(5750)-0-0)

El

And so we finally have:

1 3
M, . sM, ds=—_. (4.92)
El El

(=

L 1
jMZ .M, ds
) El

z
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Again we recognize that M; =M, and are the moments caused by the %

component of the unit redundant in the x-y plane and are thus given by equation

(4.57). Hence this term becomes:

TMYl SM ds_iﬂf{iRsine}{iRsinﬁ} Rd& (4.93)
JEL T EL 3 (V2 V2 |

This is the same as equation (4.90) except for the different flexural rigidity, and so

the solution is got from equation (4.92) to be:

L 1 3
jMZ oM, ds= . % (4.94)
VEI El, 8

Z Z

L1
T_5'|' ds
. GJ
Once again note that T'=6T and are the torques caused by the % vertical
component of the unit redundant. From equation (4.2), then we have:
.1
6T =T'=—=R(1-cosd) (4.95)

J2

Thus:
LTl / l
!E-JT ds=— 'H—R (1- cosé’)}[\/E (1- cosH)}RdH

(4.96)

3

j 1- 0059
0
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This integral is that of equation (4.9) and so the solution is:

L 1 3
jT—-oW ds:R—(3”_8j (4.97)
Sy Gl 8

1
PL op
EA

Lastly then, since P'=6P=1and L= R+/2, this term is easily calculated to be:
PL . RV2

L (4.98)
EA EA

With the values for all terms now worked out, we substitute these values into

equation (4.79) to determine the cable tension:

2 2
_ wR*  wR! .(ﬂ -2)
2\2El, 261 8

a=— (4.99)
R® 7 R =z R3(37r—8j Rv2
St 4 +
El, 8 EI, 8 GJ 8 EA
Cancelling the negatives and re-arranging gives:
1 1 (z-2) }
WR4|: +—-
2J2EI, GJ 82
! (4.100)

T =
RElz(1 1 1 (&:—8) 22
—| = + + +
2|4\El, El ) GI\ 4 R’EA

Y
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And this is the same as equation (4.70) and so the solution can proceed as before to

obtain the tension in the cable as per equation (4.73).

Comparison of the virtual work with the empirical form illustrates the interpretation
of each of the terms in the virtual work equation that is inherent in the empirical view

of such problems.
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4.6 Review of Examples 1-5

Example 1

For a radius of 2 m and a point load of 10 kN, the bending and torsion moment

diagrams are:

20 -
Bending pd
—— — Torsion //
15+ ye
£ -
£ -
= 10r S
£ e
S ~
6| -
0 _ — \/ | | | | | | |
0 10 20 30 40 50 60 70 80 90

Degrees from Y-axis

Using the equations derived in Example 1, the Matlab script for this is:

function RingBeam_ Ex1

% Example 1
R =2; % m
P =10; % kN

theta = 0:(pi/2)/50:pi/2;

M = P*R*sin(theta);
T = P*R*(1-cos(theta));
hold on;

plot(theta.*180/pi M, "k-");
plot(theta.*180/pi, T, r--");

ylabel ("Moment (kNm)*®);

xlabel ("Degrees from Y-axis");
legend("Bending”, "Torsion", "location”, "NW");
hold off;
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Example 2

For a radius of 2 m and a UDL of 10 kN/m, the bending and torsion moment

diagrams are:

40 -

Bending
—— — Torsion

30

25

20

15+

Moment (KNm)

0 - . — \ | | | | |
0 10 20 30 40 50 60 70 80 90

Degrees from Y-axis

Using the equations derived in Example 2, the Matlab script for this is:

function RingBeam_ Ex2

% Example 2
R =2; % m
w = 10; % KN/m

theta = 0:(pi/2)/50:pi/2;

M = w*R"2*(1-cos(theta));
T = w*R"2*(theta-sin(theta));
hold on;

plot(theta.*180/pi M, "k-");
plot(theta.*180/pi,T,"r--");

ylabel ("Moment (kNm)*®);

xlabel ("Degrees from Y-axis");
legend("Bending”, "Torsion", "location”, "NW");
hold off;
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Example 3

For the parameters given below, the bending and torsion moment diagrams are:

20~
Bending
. [ |
—— — Torsion /
X: 90
15+ Y:17.19
10+
£
Z
e
g Or
(]
g X: 90
> Y:0.02678
n
_10 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90

Degrees from Y-axis

Using the equations derived in Example 3, the Matlab script for this is:

function [M T alpha] = RingBeam Ex3(beta)

% Example 3
R =2; % m
w = 10; % KN/m
1 = 2.7e7; % mm4
Jd = 5.4e7; % mm4
E = 205; % KN/mm2
v = 0.30; % Poisson"s Ratio
G = E/(2*(1+Vv)); % Shear modulus
El = E*1/1e6; % kNm2
GJ = G*J/1e6; % kNm2
if nargin < 1
beta = GJ/EI; % Torsion stiffness ratio
end
alpha = w*R*(4*beta+(pi-2)"2)/(2*beta*pi+2*(3*pi-8));

theta

0:(pi/2)/50:pi/2;
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MO = w*R"2*(1-cos(theta));

TO = w*R"2*(theta-sin(theta));
M1 = -R*sin(theta);

Tl = -R*(1-cos(theta));

M = MO + alpha.*M1;

T = T0 + alpha.*T1;

if nargin < 1
hold on;
plot(theta.*180/pi M, "k-");
plot(theta.*180/pi, T, r--");
ylabel ("Moment (kNm)*®);
xlabel ("Degrees from Y-axis®);
legend("Bending”, "Torsion", "location”, "NW");
hold off;

end

The vertical reaction at A is found to be 11.043 kN. Note that the torsion is
(essentially) zero at support B. Other relevant values for bending moment and torsion

are given in the graph.

By changing £, we can examine the effect of the relative stiffnesses on the vertical

reaction at A, and consequently the bending moments and torsions. In the following
plot, the reaction at A and the maximum and minimum bending and torsion moments

are given for a range of S values.

Very small values of g reflect little torsional rigidity and so the structure movements
will be dominated by bending solely. Conversely, large values of g reflect structures
with small bending stiffness in comparison to torsional stiffness. At either extreme
the variables converge to asymptotes of extreme behaviour. For 0.1< <10 the
variables are sensitive to the relative stiffnesses. Of course, this reflects the normal

range of values for S.
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Max M

Min M ====- MaxT — — MinT

25+

20 -

15

10+ -7

____________
—_—___-~
-
-
-~

Load Effect (kN & kNm)

Beta

The Matlab code to produce this figure is:

10

% Variation with Beta
beta = logspace(-3,3);
n = length(beta);
for i = 1:n
[M T alpha] = RingBeam Ex3(beta(i));

Eff(i,1) = alpha
EFff(i,2) = max(M);
EFF(i,3) = min(M);
EfFF(i,4) = max(T);
EFf(i,5) = min(T);
end
hold on;

plot(beta,Eff(:,1),"b:");
plot(beta,EFff(:,2), "k-", "LineWidth",2);
plot(beta,Eff(:,3), "k-");
plot(beta,Eff(:,4), " r--", "LineWidth",2);
plot(beta,Eff(:,5), " r--");

hold offT;

set(gca, "xscale”,"log");

"Orientation”, "horizontal ");
xlabel ("Beta");
ylabel ("Load Effect (kN & kNm)*®);

legend("Vva“, "Max M","Min M","Max T","Min T","Location”,"NO",...
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Example 4

For a 20 mm diameter cable, and for the other parameters given below, the bending

and torsion moment diagrams are:

20

15+

Bending
—— — Torsion

10

Moment (KNm)
(631

X: 90
Y:17.58

20 30 40 50 60

Degrees from Y-axis

The values in the graph should be compared to those of Example 3, where the support

was rigid. The Matlab script, using Example 4’s equations, for this problem is:

function [M T alpha]

Example 4

— 2;

2;

10;

314;

2.7e7;

5.4e7;

205;

0.30;

E/(2*(1+Vv));

EA = E*A;

E*1/1e6;

GJ = G*J/1e6;

if nargin < 2
beta = GJ/EI;

OK<MGQUm>=rr 30X

m
1l

end

if nargin < 1
gamma = EA/EI;

end

%

%
%
%
%
%
%
%

%
%

RingBeam_Ex4(gamma,beta)

m - radius of beam
m - length of cable

kN/m - UDL

mm2 - area of cable
mm4

mm4

kN/mm2

Poisson®"s Ratio
Shear modulus

kN - axial stiffness
kNm2

kNm2

% Torsion stiffness ratio

% Axial stiffness ratio
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alpha = w*R*(4*beta+(pi-2)"2)/(2*beta*pi+2*(3*pi-8)+8*(beta/gamma)*(L/R"3));

theta = 0:(pi/2)/50:pi/2;

MO = w*R"2*(1-cos(theta));

TO = w*R"2*(theta-sin(theta));
M1 = -R*sin(theta);

Tl = -R*(1-cos(theta));

M = MO + alpha.*M1;

T = TO + alpha.*T1;

if nargin < 1
hold on;
plot(theta.*180/pi,M, "k-");
plot(theta.*180/pi,T,"r--");
ylabel ("Moment (kNm)*®);
xlabel ("Degrees from Y-axis®);
legend("Bending”, "Torsion", "location®™, "NW");
hold ofT;

end

Whist keeping the £ constant, we can examine the effect of varying the cable
stiffness on the behaviour of the structure, by varying ». Again we plot the reaction

at A and the maximum and minimum bending and torsion moments for the range of

y values.

For small y, the cable has little stiffness and so the primary behaviour will be that of
Example 1, where the beam was a pure cantilever. Conversely for high y, the cable is
very stiff and so the beam behaves as in Example 3, where there was a pinned support
at A. Compare the maximum (hogging) bending moments for these two cases with
the graph. Lastly, for 0.01<y <3, the cable and beam interact and the variables are
sensitive to the exact ratio of stiffness. Typical values in practice are towards the

lower end of this region.
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Max M

Min M ===== MaxT —— — MinT

Load Effect (kN & kNm)

_10 Lol

10° 10 10"

The Matlab code for this plot is:

10° 10" 10>

Gamma

10°

% Variation with Gamma
gamma = logspace(-3,3);
n = length(gamma);

for 1 = 1:n

Eff(i,1) = alpha;
EFff(i,2) = max(M);
EFF(i,3) = min(M);
EFf(i,4) = max(T);
EFff(i,5) = min(T);
end
hold on;

plot(gamma,EFffF(:,1),"b:");
plot(gamma,EFff(:,3),"k-");

plot(gamma,EFff(:,5), " r--");
hold ofT;
set(gca, "xscale”,"log");

"Orientation®, "horizontal ") ;
xlabel ("Gamma™);
ylabel ("Load Effect (kN & kNm)*");

[M T alpha] = RingBeam_ Ex4(gamma(i));

plot(gamma,EFfF(:,2),"k-", "LineWidth",2);

plot(gamma,EFF(:,4), " r--","LineWidth",2);

legend("T","Max M®,*Min M",*Max T",*Min T°,"Location®,"NO",...
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Example 5

Again we consider a 20 mm diameter cable, and a doubly symmetric section, that is

El, = El, . For the parameters below the bending and torsion moment diagrams are:

30
YY Bending
ffffff ZZ Bendin
20 . g n
— — Torsion X: 90
. Y:20.78
% X: 90
=3 Y:3.61
= =
S
O
=
X: 90
Y:-19.22
- 1!
0 10 20 30 40 50 60 70 80 90

Degrees from Y-axis

The values in the graph should be compared to those of Example 4, where the cable

was vertical. The Matlab script, using Example 5’s equations, for this problem is:

function [My T alpha] = RingBeam_ Ex5(lamda,gamma,beta)
% Example 5
R = 2; % m - radius of beam
w = 10; % kN/m - UDL
A = 314; % mm2 - area of cable
ly = 2.7e7; % mm4
Iz = 2.7e7; % mm4
J = 5.4e7; % mm4
E = 205; % kN/mm2
v = 0.30; % Poisson"s Ratio
G = E/(2*(1+Vv)); % Shear modulus
EA = E*A; % kN - axial stiffness
Ely = E*ly/le6; % kNm2
Elz = E*1z/1e6; % kNm2
GJ = G*J/1e6; % kNm2
if nargin < 3
beta = GJ/Ely; % Torsion stiffness ratio
end
if nargin < 2
gamma = EA/Ely; % Axial stiffness ratio
end
if nargin < 1
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lamda = Ely/Elz; % Bending stiffness ratio
end

numerator = (4*beta+(pi-2)"2)/(beta*sqrt(2));
denominator = (pi*(1+1/lamda)+(3*pi-8)/beta+8*sqrt(2)/(gamma*R"2));
alpha = w*R*numerator/denominator;

theta = 0:(pi/2)/50:pi/2;

MOy = w*R"2*(1-cos(theta));
MOz 0;

TO = w*R"2*(theta-sin(theta));
Mly = -R*sin(theta);

M1z = -R*sin(theta);

Tl = -R*(1-cos(theta));

My = MOy + alpha.*Mly;
Mz MOz + alpha.*M1z;
T = T0 + alpha.*T1;

if nargin < 1
hold on;
plot(theta.*180/pi My, "k");
plot(theta.*180/pi ,Mz,"k:");
plot(theta.*180/pi,T,"r--");
ylabel ("Moment (kNm)*");
xlabel ("Degrees from Y-axis");
legend(°YY Bending®,"ZZ Bending", "Torsion", "location”™, "NW");
hold offT;
end

Keep all parameters constant, but varying the ratio of the bending rigidities by
changing A, the output variables are as shown below. For low A (a tall slender
beam) the beam behaves as a cantilever. Thus the cable requires some transverse
bending stiffness to be mobilized. With high A4 (a wide flat beam) the beam behaves
as if supported at A with a vertical roller. Only vertical movement takes place, and the
effect of the cable is solely its vertical stiffness at A. Usually 0.1< 2 <2 which means

that the output variables are usually quite sensitive to the input parameters.
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Max My

MaxT —— — MinT

E

Z

X

3

Z

3

3

2

]

©

]

O \\\\

| ~—
10+ -
_20 Ll | | | | L |

10° 10 10" 10° 10" 10° 10°
Lamda

The Matlab code to produce this graph is:

% Variation with Lamda
lamda = logspace(-3,3);
n = length(lamda);

for 1 = 1:n

[My T alpha] = RingBeam_Ex5(lamda(i));

EFff(i,)

Eff(i,2)

Eff(i,3)

EFf(i,4)

Eff(i,5)
end

hold on;

hold ofT;

plot(lamda, EFF(:
plot(lamda,EFF(:
plot(lamda,EFff(:
plot(lamda,EFfF(:
plot(lamda,Eff(:

alpha;

max(My) ;
min(My);
max(T);
min(T);

1),7b:7);
,2). k=", "LineWidth",2);
53)5.k_.);
,4),"r--","LineWidth",2);
15)1.r__.);

set(gca, "xscale”,"log");

"Orientation®, "horizontal ");
xlabel ("Lamda®);
ylabel ("Load Effect (kN & kNm)*");

legend("T", *Max My®,"Min My*",*Max T",*Min T","Location”,*NO", ...
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5. Advanced: Grid Examples

5.1 Examplel

Problem

For the grid structure shown, which has flexural and torsional rigidities of EIl and GJ

respectively, show that the vertical reaction at C is given by:

Where

A /ﬂ,

112
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Solution

Using virtual work, we have:
oW =0

SW, = 6W, (5.1)

0= j— SM ds+ [—. 5T ds
GJ

Choosing the vertical reaction at C as the redundant gives the following diagrams:

And the free bending moment diagram is:
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PL

/-
e

Mo
But the superposition gives:
M =M, +aM, (5.2)
T=T,+aT, (5.3)
Substituting, we get:
M M T T
ozjw.m ds+jm.5]‘ ds (5.4)
GJ
2
[ MMy s, j 1ds+ ToTs s jTl ds=0 (5.5)
El GJ
2
[ MM, Mldsmj L gs 4 [T g+ o[ 1 ds =0 (5.6)
El GJ GJ
i . . El .
Taking the beam to be prismatic, and g = 5] gives:
[MoM, ds+a M/ ds+ B[T,T, ds+ap [T ds=0 (5.7)
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From which:

[ [MoM, ds+ B[T,T, ds |
UMf ds +ﬂ.|‘T12 ds] ©9)

o=-

From the various diagrams and volume integrals tables, the terms evaluate to:

1 PL®
[MoM, ds =5 (L(PL)(L) ==~
IBJ.ToTl ds = IB(O) =0 (5.9)

2

[M2 ds = z@@)(g(g;f
BT ds=pA(L)(L)(L)=BL

Substituting gives:

7o
3
R I
[3 L® +,BL3} (5.10)
PP 11
3 L (%+5)
Which yields:
1
a=V, :P( j (5.11)
2+3p
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Numerical Example

Using a 200 x 400 mm deep rectangular concrete section, gives the following:

| =1.067 x10° m* J=0.732x10° m*
The material model used is for a 50N concrete with:
E =30 kN/mm?> v=0.2

Using the elastic relation, we have:

6
G=_ B _30x10" 155 108 kN/m?
2(1+v) 2(1+02)

From the model, LUSAS gives: V. =0.809 kN . Other results follow.

W
Scale: 1: 20.5246
Zoom: 1000
Eye: (-0.57735, -0.57735, 0.57735) 4
Linear/dynamic analysis - l/ *
Loadcase: 1:Loadcase 1
Results file: grid.mys
Maximum displacemer it 2.61791E-3 at node 2

Deformation exaggeration: 156,801

Deflected Shape
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87

Scale: 1: 20,5246

Zoom: 1000

Eye: (-0.57735, -0.57735, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadcase 1

Results file: gridmys

It

Scale: 1: 20,5246

Zoom: 100.0

Eye: (-0.57735, -0.57735, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadcase 1

Results file: grid.mys

Diagram entity: Force/Moment - Thick Grillage
Diagram component: Mx

Diagram maximum 0.0 at Gauss point 1 of element 5

Scale: 1: 20,5246

Zoom: 100.0

Eye: {-0.57735, -0.57735, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadecase 1

Results file: grid mys

Ciagram entity: Force/Moment - Thick Grillage

Diagram component: Fz

Diagram maximum 0.809499 at Gauss point 1 of element 5

Diagram minimum =2.1905 at Gauss point 1 of element 4

Diagram scale: 1: 217616

o

Bending Moment Diagram

]

Torsion Moment Diagram

Shear Force Diagram
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5.2 Example 2

Problem

For the grid structure shown, which has flexural and torsional rigidities of El and GJ

respectively, show that the reactions at C are given by:

VC=P(4ﬂ+4j MC=PL[4ﬂ+2j
8L +5 86 +5

Where

(Note that the support symbol at C indicates a moment and vertical support at C, but

no torsional restraint.)
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Solution

The general virtual work equations are:

SW =0
SW, = oW, (5.12)

0= j— SM ds + [—. 5T ds
GJ

We choose the moment and vertical restraints at C as the redundants. The vertical

redundant gives the same diagrams as before:

Q)

—
L

\

l

And, for the moment restraint, we apply a unit moment:

/D:L

Which yields the following:
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Again the free bending moment diagram is:

PL

/~
O

Mo

Since there are two redundants, there are two possible equilibrium sets to use as the

virtual moments and torques. Thus there are two equations that can be used:

0= j— M, ds + —J T, ds (5.13)

M T
ozja-Mdeja-Tzds (5.14)
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Superposition gives:

M=M,+ayM, +a,M,
T=T,+aT +a,l,

Substituting, we get from equation (5.13):

-M, ds +

0 J (M +a1M +a,M,)

jMEI 1ds+alj'—1ds+ j

2
+.[ Lds+ o, Tl dS+a2 -;Tl ds=0

Taking the beam to be prismatic, and g = % gives:

[MoM, ds+a,[M/ ds+a, [M,M, ds
+B[T,T, ds+ o, B[ T7 ds+ B[ T,T, ds =0

Similarly, substituting equations (5.15) and (5.16) into equation (5.14) gives:

[MoM, ds+a, [MM, ds+a,[M] ds
+B[T,T, ds + B[ T,T, ds+a, B[ T, ds =0

We can write equations (5.19) and (5.20) in matrix form for clarity:

121

(5.15)
(5.16)

(5.17)

(5.18)

(5.19)

(5.20)
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[MoM, ds+ B[ T.T, ds

{jMOM1d3+ﬂjTOTlds}+

(5.21)
[MPds+p[T7ds  [M,M, ds+B[T,T, ds {al}
=0
[MM, ds+B[TT,ds  [M]ds+p[T ds |l
Evaluating the integrals for the first equation gives:
- —PL® -
MM, ds = BT, T,ds=0
) 21° (T2 3
Ml dS:? ﬂ T1 dS:ﬂL (522)
[M,M, ds=—=17 B[T,T, ds=-pL°
And for the second:
[M,M, ds=0 B[T.T,ds=0
[M,M, ds = —% L B[TT, ds=-pL° (5.23)
[(MZds=L BTz ds=pL
Substituting these into equation (5.21), we have:
i) | E(2ep) -c[5e0)
- 3 2 a,
3 ¢+ =0 (5.24)
a,

0 —L2(%+,H] L(1+5)
Giving:
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Inverting the matrix gives:

a | 1
a,| 5+8p

Thus:

V
Thus, since {al}z{ ¢ },we have:
a, M,

VC:P(4ﬂ+4j
86 +5

And this is the requested result.

123

P
5+8p

|

4(1+ p)
2L (1+2)

M, = PL[4ﬂ+2j
86 +5

|

(5.25)

(5.26)

(5.27)

(5.28)

Dr. C. Caprani



Structural Analysis IV

Some useful Matlab symbolic computation script appropriate to this problem is:

syms beta L P

A= L"3*(2/3+beta) -L"2*(0.5+beta);
-L"2*(0.5+beta) L*(1+beta)];

A0 = [P*L"3/3; 01;

invA = inv(A);

invA = simplify(invA);
disp(simplify(det(A)));

disp(invA);
alpha = InvA*AOQ;
alpha = simplify(alpha);

124 Dr. C. Caprani




Structural Analysis IV

Numerical Example

For the numerical model previously considered, for these support conditions, LUSAS

gives us:

V. =5.45 kN M. =14.5 KNm

o3 a4

Scale: 1: 27.8604

Zoom: 100.0

Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis

4

Loadcase: 1:Loadcase 1

Results file: grid.mys = L" X
Maximum displacement 1.29641E-3 at node 2 :

Deformation exaggeration: 425.808

Deflected Shape

o2
Scale: 1: 20,7535
Zoom: 100.0
Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis
Loadcase: 1:Loadcase 1
Results file: grid.mys

Diagram entity: Force/Moment - Thick Grillage -

Diagram component. Fz x
Diagram maximum 5.4488 at Gauss point 1 of element 5 s l,v’
Diagram minimum -4.5512 at Gauss point 1 of element 4

Diagram scale: 1: 110116

Shear Force Diagram
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o5 o

Scale: 1: 20,7535

Zoom: 100.0

Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadcase 1

Results file: grid.mys

Diagram entity: Force/Moment - Thick Grillage -

Diagram component: Mx 182 x
Diagram maximum 0.0 at Gauss point 1 of element 5 s l}'

Diagram minimum -1.81817 at Gauss point 1 of element 4

Diagram scale: 1: 330001

Torsion Moment Diagram

Scale: 1: 20,7535

Zoom: 100.0

Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadcase 1

Results file: grid.mys

Diagram entity: Force/Moment - Thick Grillage 4 -

Diagram component: My %
Diagram maximum 14.5282 at Gauss point 11 of element & - L"

Diagram minimum -1.81817 at Gauss point 1 of element 5

Diagram scale: 1: 0.412989

Bending Moment Diagram
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5.3 Example 3

Problem

For the grid structure shown, which has flexural and torsional rigidities of El and GJ

respectively, show that the reactions at C are given by:

VC:E IV|C:PL_(2ﬂ+1) Tfﬁ' 1
2 4 (B+1) 4 (p+1)
Where
El
)
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Solution

The general virtual work equations are:

SW =0
SW, = oW, (5.29)

0= j— SM ds + [—. 5T ds
GJ

We choose the moment, vertical, and torsional restraints at C as the redundants. The

vertical and moment redundants give (as before):

Applying the unit torsional moment gives:
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AL

N\

Again the free bending moment diagram is:

{

Since there are three redundants, there are three possible equilibrium sets to use. Thus

Ay

Mo

we have the following three equations:
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_ j%. M, ds + IC;F—J-Tl ds (5.30)

0= j— M, ds + —J T, ds (5.31)
M T

:IE-M3ds+Ia-T3 ds (5.32)

Superposition of the structures gives:

M=M,+aM, +a,M, +aM, (5.33)
T=T,+aT +a,T,+a,l, (5.34)

Substituting, we get from equation (5.13):

(TO +a T +a,l, + a3T3)
GJ

0_J»(I\/IO+051|\/|1+052M2+053|\/|3)

T -Mlds+j

T, ds (5.35)

jMEI 1 ds+alj— ds+ I s+a3I MEII\Al ds 5,36

T,T. T,T
071 1 2°1 371 —
+Ia dS+a1Ia dS+a2J‘a dS+C¥3J.a dS—O
: : . El .
Taking the beam to be prismatic, and g = ol gives:

M M, ds+a, [M?Zds+a,|M,M, ds+a,| MM, ds
I 01 1'[ 1 2'[ 2771 3'[ 371 (537)
+B[ToT, ds+ e, B[ T ds+a, B[ T,T, ds + a, B[ T,T, ds = 0

Similarly, substituting equations (5.15) and (5.16) into equations (5.14) and (5.32)

gives:
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[MoM, ds+a; [MM, ds+a,[M] ds+a,[M M,

ds

(5.38)

+B[ToT, ds+ e, B[ TT, ds +a, B[ T, s+, B[ T,T, ds =0

[MoM, ds+a, [M,M, ds +a, MM, ds + s [M?

ds

(5.39)

+B|T,T, ds + e, B[ TT, ds + . B[ T,T, ds + a, B[ T7 ds =0

We can write equations (5.19), (5.20), and (5.39) in matrix form for clarity:

(M, +[8M]{o] + S{T,} + F[8T{a} ={0;

Or more concisely:

{Ao) +[8A]{ef ={0]

In which {A,} is the “free’ actions vector:

[MoM, ds+ B[ T,T, ds

(A} ={M,}+B{T,} =1 [M;M, ds+ B[T,T, ds

[MoM, ds+ ]

And [8A] is the virtual actions matrix:
[6A]=[6M]+ B[5T]

=| [MM, ds+B[TT,ds  [M]ds+ [T} ds
_IM1M3d5+ﬂIT1T3dS [M M, ds+ B[T,T, ds

131

[T.T, ds

- [MZds+p[Tds  [M,M,ds+B[T,T,ds  [MM,ds+p[TT,ds |
[M,M, ds+ B[ T,T, ds
[Mds+pg[T7 ds |

(5.40)

(5.41)

(5.42)

(5.43)
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And {a} is the redundant multipliers vector:

{a}=1a, (5.44)

Evaluating the free actions vector integrals gives:

o J— 3 o

MM, ds=—C B[T,T ds=0

[M,M, ds=0 B[T.T,ds=0 (5.45)
- 2 o

MOMgds:% B[T,T,ds=0

The virtual moment and torsion integrals are (noting that the matrices are

symmetrical):

218 2 - 2
J‘Mlz ds:? J‘MZMldS=—? | M1M3dS=—?
[M7ds=L [M,M,ds=0  (5.46)
(M2 ds=L
[T2ds=0° [TTds=-0" [TT,ds=0
[17ds=L [TT,ds=0  (5.47)
[T2ds=L

Substituting these integral results into equation (5.41) gives:
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Inverting the matrix gives:

6( f+1
L3 45+1
a,
3(20+1
052 =7
L°\ 46 +1
2%
3 1
tLZ 45 +1

Thus:

., L, 2 ]
AL S -pl
al
—— B L+pL 0 |{a,+=0
2 2%
—L? 0 L+ﬂL_
o1 L? \
-t (Tﬂj 3 pL
o 3
L(1+ ) a,+=1 0
o, _P_|_2
0 L(1+ ) 2
3(2p+1 3( 1
2\ 4p+1 ’\ 45 +1
(1267 +206+5| 3[ 2p+1
(48+1)(p+1)| 2L|(48+1)(5+1)
28+1 | 1] 8pB+5
(4ﬂ+1)(ﬂ+1)_ 2L_(4ﬂ+1)(ﬂ+1)
133

(5.48)

(5.49)

(5.50)
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:
I

(

PL’( 6
—| = |(p+1
% 3 2
o, b= 1 PL(%j(zfm)_i
4+1)| 3 \ L 2
% 3 2
F’_L(ij_i(i
3\ 2 \ 2L
Simplifying, we get:
P
0 2
"l PL (28+1)
a, = .
4 (B+1)
24!
PL 1
4 (p+1)

3

|

86 +5
p+1

[

J

20 +1
f+1

|

(5.51)

|

(5.52)

Since the redundants chosen are the reactions required, the problem is solved.

Some useful Matlab symbolic computation script appropriate to this problem is:

syms beta L P

A = [ L"3*(beta+2/3) -L~2*(beta+0.5) -L"2/2;

-L"2*(beta+0.5) L*(beta+l) 0;

-L"2/2 0 L*(beta+1)];
AO = [P*L"3/3; 0; -P*L"2/2];
invA = inv(A);
invA = simplify(invA);
disp(simplify(det(A)));
disp(invA);
alpha = InvA*AOQ;
alpha = simplify(alpha);
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Numerical Example

For the numerical model previously considered, for these support conditions, LUSAS

gives us:

V., =5.0 kN M. =13.3 kNm T. =1.67 kNm

a3t =

Scale: 1: 27.8604

Zoom: 100.0

Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis

4

Loadcase: 1:Loadcase 1

Results file: grid.mys = L" X
Maximum displacement 1,128963E-3 at node 2 :

Deformation exaggeration: 468.388

Deflected Shape

o2 o1

Scale: 1: 20,7535

Zoom: 100.0

Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadcase 1

Results file: grid.mys

Diagram entity: Force/Moment - Thick Grillage -

Diagram component. Fz X
Diagram maximum 5.0 at Gauss point 1 of element 5 s l/

Diagram minimum -5.0 at Gauss paint 1 of element 4

Diagram scale: 1: 1.2

Shear Force Diagram

135 Dr. C. Caprani



Structural Analysis IV

.‘.' ‘;1

Scale: 1: 20,7535

Zoom: 100.0

Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadcase 1

Results file: grid.mys

Diagram entity: Force/Moment - Thick Grillage -
Diagram component: Mx _I ; %
Diagram maximum 1.66842 at Gauss point 1 of element 5 .l 3,1'
Diagram minimum -1.66842 at Gauss point 1 of element 4

Diagram scale: 1: 359622

Torsion Moment Diagram

Scale: 1: 20,7535

Zoom: 100.0

Eye: (-0.57735, -0.57725, 0.57735)
Linear/dynamic analysis

Loadcase: 1:Loadcase 1

Results file: grid.mys

Diagram entity: Force/Maoment - Thick Grillage .

Diagram component: My %
Diagram maximum 13.3316 at Gauss point 1 of element 1 hi L"

Diagram minimum -1.66842 at Gauss point 1 of element 5

Diagram scale: 1: 0.450059

Bending Moment Diagram
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6. Appendix — Past Exam Questions

6.1 Sample Paper 2007

3. For the rigidly jointed frame shown in Fig. Q3, using Virtual Work:
(i)  Determine the bending moment moments due to the loads as shown;
(15 marks)

(i)  Draw the bending moment diagram, showing all important values;

(4 marks)
(iii) Determine the reactions at A and E;

(3 marks)
(iv) Draw the deflected shape of the frame.

(3 marks)

Neglect axial effects in the flexural members.
Take the following values:

| for the frame = 150x10° mm?*;

Avrea of the stay EB = 100 mm?;

Take E = 200 kN/mm? for all members.

C
10 kN c
Al
B N
D
€
Al
E A
) 2m | 2m
FIG. Q3
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6.2 Semester 1 Exam 2007

3. For the rigidly jointed frame shown in Fig. Q3, using Virtual Work:
(i)  Determine the bending moment moments due to the loads as shown;
(15 marks)

(i)  Draw the bending moment diagram, showing all important values;

(4 marks)
(iii) Determine the reactions at A and E;

(3 marks)
(iv) Draw the deflected shape of the frame.

(3 marks)

Neglect axial effects in the flexural members.
Take the following values:

| for the frame = 150x10° mm?*;

Avrea of the stay EF = 200 mm?;

Take E = 200 kN/mm? for all members.

C piy
c 10 kN
<
B F

T D
£
<

LA

| 4m 4m
FIG. Q3

Ans.a=35.0.
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6.3 Semester 1 Exam 2008

QUESTION 3

For the frame shown in Fig. Q3, using Virtual Work:

(M Determine the force in the tie;

(i)  Draw the bending moment diagram, showing all important values;

(iii)  Determine the deflection at C;

(iv) Determine an area of the tie such that the bending moments in the beam are minimized;
(v)  For this new area of tie, determine the deflection at C;

(vi)  Draw the deflected shape of the structure.

(25 marks)

Note:

Neglect axial effects in the flexural members and take the following values:

e For the frame, 1 =600x10° mm*:
e For the tie, A=300 mm?;
e For all members, E =200 kN/mm? .

Ly

TIE

4 m

FIG. Q3

Ans.a =21.24; ¢, =4.1mmy; A=2160 mm?; 5, =2.0 mm

139 Dr. C. Caprani



Structural Analysis IV

6.4 Semester 1 Exam 2009

QUESTION 3
For the frame shown in Fig. Q3, using Virtual Work:

() Determine the axial forces in the members;

(i)  Draw the bending moment diagram, showing all important values;
(iii)  Determine the reactions;

(iv)  Determine the vertical deflection at D;

(v)  Draw the deflected shape of the structure.

(25 marks)

Note:
Neglect axial effects in the flexural members and take the following values:

e For the beam ABCD, | =600x10%° mm?*;

e For members BF and CE, A=300 mm? ;
e For all members, E =200 kN/mm? .

. E
e
™ 60kN¢
€
(ap]
F
) L 3m 1m 4 m

FIG. Q3

Ans.a =113.7 (for CE); &y, =55 mm
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6.5 Semester 1 Exam 2010

QUESTION 3
For the frame shown in Fig. Q3, using Virtual Work:
(1 Draw the bending moment diagram, showing all important values;
(i)  Determine the horizontal displacement at C;
(iii)  Determine the vertical deflection at C;

(iv)  Draw the deflected shape of the structure.

Note:
Neglect axial effects in the flexural members and take the following values:

e For the beam ABC, El =5x10° kNm?;

e For member BD, E =200 kN/mm? and A =200 mm?;
e The following integral results may assist in your solution:

4 m L

FIG. Q3

Isinedﬂz—cose J.cosesinedez—lcosw J.sinzedezg—isinw
4 2 4
vy
D -
&
o\
N
7

(25 marks)

Ans.a =37.1 (for BD); &¢, =104 mm <« 6, =83 mm \
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7. Appendix — Trigonometric Integrals

7.1 Useful Identities

In the following derivations, use is made of the trigonometric identities:

cosHsinQ:%sin 20 (7.1)
, . 1
cos’ 6 = E(1+ c0s26) (7.2)
., 1
sin 0:5(1—c0320) (7.3)
Integration by parts is also used:
fudx=ux—[xdu+C (7.4)
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7.2 Basic Results

Neglecting the constant of integration, some useful results are:

[cosgdo =sing (7.5)
[sin6d6 =—cose (7.6)
. 1
[sin a@dez—gcosae (7.7)
1.
jcosa@dezgsm ad (7.8)
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7.3 Common Integrals

The more involved integrals commonly appearing in structural analysis problems are:

jcos@sin@d@

Using identity (7.1) gives:
[cos@singda :%jsin 20060
Next using (7.7), we have:

Ejsin 20d60 = 1 —icosze
2 2 2

= —300320
4

And so:

jcos@sin@dez—%cos%’ (7.9)

144 Dr. C. Caprani



Structural Analysis IV

jcoszede

Using (7.2), we have:

jcos2 0do :%j(1+ c0s260)dé

1
_ EUld@ + [cos20d6 |
Next using (7.8):

1[j1d9+jcoszed9] :£{0+£sin 29}
2 2 2

:Q+£sin 20
2 4
And so:

jcoszé’d6’=§+%sin26’ (7.10)

145 Dr. C. Caprani



Structural Analysis IV

[sin?6de

Using (7.3), we have:

jsin29d9=%j(1—cosze)d9

1
=§[j1d9—jcoszed9]
Next using (7.8):

1 1d@ — | cos26d 6 :l 0—lsin29
2 2 2

:Q—lsinZH
2 4

And so:

jsinzé’dezg—%sinw (7.11)
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j@cos@dé’

Using integration by parts write:

I@costH:ju dx

Where:
u=40 dx=cos@ ddo
To give:
du=dé
And

jdx:jcosede
X=sin@

Which uses (7.5). Thus, from (7.4), we have:

ju dx:ux—jxdu
@cosfdld =6sin@d— |sind do
J ]

And so, using (7.6) we have:

jecosedezesin0+cose

147

(7.12)
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[osinodo

Using integration by parts write:

j@sin@dé’:ju dx

Where:
u=60 dx=sing dé
To give:
du=dé
And
[dx=[sinode
X =—C0sé

Which uses (7.6). Thus, from (7.4), we have:

fudx=ux—[xdu
[6sin@d6 =6(—cos) - [(—cosd)do

And so, using (7.5) we have:

j@sin 0dod =-0cosd +sing

148

(7.13)
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[cos(A-6)d6

Using integration by substitution, we write u= A— 6 to give:

du _
dé
du=-dé@

Thus:

[cos(A-6)dé =[cosu(—du)

And since, using (7.5):

—jcosu du = —sinu

We have:

[cos(A—6)do =—sin(A-0) (7.14)
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[sin(A-6)d6

Using integration by substitution, we write u= A- 6 to give:

du _
dé
du=-dé@

Thus:
[sin(A—6)d6 = [sinu(—du)
And since, using (7.6):
—~[sinu du=—(-cosu)

We have:

[sin(A—-6)d& =cos(A-0) (7.15)
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8. Appendix —Volume Integrals

o

/

T

/

L

/

=ikl =ikl =(i+2i, )kl =ikl
| 3 5 6(Jl+ i2) 5 ]
kg 1. 1. 1, . 1.
=ikl = ikl (2 kI =ikl
| ] 3] 6( it i) 5
1. 1. l[J'l(2kl+kz)+ 1.
ki k Ej(k1+2k2)l 81(2k1+k2)l 6 . Ej(k1+k2)l
/ Jo (K, + 2k, ) 1
1. 1. 1,. . .
| k Ejkl Ejkl E(Jl+12)kl jkl
U] e |t D00
)] =~ jk(1+a) = jk(1+b) 6 = jkl
~a b 6 6 i, (1+a)]k 2
. 5 1. 1, . . 2.
> ikl = ikl = (3j +5j, )k ik
ﬁ L 7] 12( j,+51,) 3
1. 5 1, . . 2.
k =ikl > ikl = (5§ +3j, )k ik
Q 4! 12) 1%k +31) 3]
P 1. 1. 1,. . 1.
=ikl = ikl = (i +3j, )kl =ikl
4/ 7] ol 12(11+ i) 3]
K i 1. 1. 1, . . 1.
= ikl =ikl = (3 kI =ikl
/ ol 7 12( it 2) 3]
1. 1. 1, 2.
x =ikl = ikl = kI ik
| )| 3] 3] 3(Jl+Jz) 3
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