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Structural Analysis IV 

1. Introduction 

1.1 Purpose 

Previously we only used virtual work to analyse structures whose members primarily 

behaved in flexure or in axial forces. Many real structures are comprised of a mixture 

of such members. Cable-stay and suspension bridges area good examples: the deck-

level carries load primarily through bending whilst the cable and pylon elements 

carry load through axial forces mainly. A simple example is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our knowledge of virtual work to-date is sufficient to analyse such structures. 
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2. Virtual Work Development 

2.1 The Principle of Virtual Work 

This states that: 

 

A body is in equilibrium if, and only if, the virtual work of all forces acting on 

the body is zero. 

 

In this context, the word ‘virtual’ means ‘having the effect of, but not the actual form 

of, what is specified’. 

 

There are two ways to define virtual work, as follows. 

 

1. Virtual Displacement:  

Virtual work is the work done by the actual forces acting on the body moving 

through a virtual displacement. 

 

2. Virtual Force:  

Virtual work is the work done by a virtual force acting on the body moving 

through the actual displacements. 

 

Virtual Displacements 

A virtual displacement is a displacement that is only imagined to occur: 

• virtual displacements must be small enough such that the force directions are 

maintained. 

• virtual displacements within a body must be geometrically compatible with 

the original structure. That is, geometrical constraints (i.e. supports) and 

member continuity must be maintained.  
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Virtual Forces 

A virtual force is a force imagined to be applied and is then moved through the actual 

deformations of the body, thus causing virtual work. 

 

Virtual forces must form an equilibrium set of their own. 

 

Internal and External Virtual Work 

When a structures deforms, work is done both by the applied loads moving through a 

displacement, as well as by the increase in strain energy in the structure. Thus when 

virtual displacements or forces are causing virtual work, we have: 

 

0
0I E

E I

W
W W

W W

δ
δ δ

δ δ

=
− =

=
 

 

 where 

• Virtual work is denoted Wδ  and is zero for a body in equilibrium; 

• External virtual work is EWδ , and; 

• Internal virtual work is IWδ . 

 

And so the external virtual work must equal the internal virtual work. It is in this 

form that the Principle of Virtual Work finds most use. 

Dr. C. Caprani 6



Structural Analysis IV 

Application of Virtual Displacements 

For a virtual displacement we have: 

 

0

E I

i i i

W
W W

iF y P e

δ
δ δ

δ δ

=
=

⋅ = ⋅∑ ∑
 

 

In which, for the external virtual work,  represents an externally applied force (or 

moment) and 

iF

iyδ  its virtual displacement. And for the internal virtual work, iP  

represents the internal force (or moment) in member i and ieδ  its virtual deformation. 

The summations reflect the fact that all work done must be accounted for.  

 

Remember in the above, each the displacements must be compatible and the forces 

must be in equilibrium, summarized as: 

 

Set of forces in 

equilibrium  

i i i iF y P eδ δ⋅ = ⋅∑ ∑  

Set of compatible 

displacements  
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Application of Virtual Forces 

When virtual forces are applied, we have: 

 

0

E I

i i i

W
W W

y F e iP

δ
δ δ

δ δ

=
=

⋅ = ⋅∑ ∑
 

 

And again note that we have an equilibrium set of forces and a compatible set of 

displacements: 

 

Set of compatible 

displacements 

i i i iy F e Pδ δ⋅ = ⋅∑ ∑  

Set of forces in 

equilibrium  
 

 

In this case the displacements are the real displacements that occur when the structure 

is in equilibrium and the virtual forces are any set of arbitrary forces that are in 

equilibrium. 
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2.2 Virtual Work for Deflections 

Deflections in Beams and Frames 

For a beam we proceed as: 

1. Write the virtual work equation for bending: 

 

 
0

E I

i i

W
W W

y F M

δ
δ δ

δ θ δ

=
=

⋅ = ⋅∑
 

 

2. Place a unit load, Fδ , at the point at which deflection is required; 

3. Find the real bending moment diagram, xM , since the real curvatures are given 

by: 

 

x
x

x

M
EI

θ =  

 

4. Solve for the virtual bending moment diagram (the virtual force equilibrium 

set), Mδ , caused by the virtual unit load. 

5. Solve the virtual work equation: 

 

 
0

1
L

x
x

My M
EI

δ⎡ ⎤⋅ = ⋅⎢ ⎥⎣ ⎦∫ dx  

 

6. Note that the integration tables can be used for this step. 
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2.3 Virtual Work for Indeterminate Structures 

General Approach 

Using compatibility of displacement, we have: 

 

 
    Final       =    Primary            +                  Reactant 

 

Next, further break up the reactant structure, using linear superposition: 

 

 
Reactant        =    Multiplier     ×    Unit Reactant 

 

We summarize this process as: 

 

 0 1M M Mα= +  

 

• M is the force system in the original structure (in this case moments); 

• 0M  is the primary structure force system; 

• 1M  is the unit reactant structure force system. 

The primary structure can be analysed, as can the unit reactant structure. Thus, the 

only unknown is the multiplier, α , for which we use virtual work to calculate. 
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Finding the Multiplier 

For beams and frames, we have: 

 

( )210 1

0 0

0
L L

ii

i i

MM M dx dx
EI EI

δδ α⋅
= + ⋅∑ ∑∫ ∫  

Thus: 

( )

0 1

0
21

0

L
i

i

L
i

i

M M dx
EI

M
dx

EI

δ

α
δ

⋅−
=
∑∫

∑∫
 

 

Dr. C. Caprani 11



Structural Analysis IV 

2.4 Virtual Work for Combined Structures 

Basis 

The virtual work that is done in a truss member is exactly the same concept as the 

virtual work done in a beam element. Thus the virtual work for a structure comprised 

of both types of members is just: 

 

0

E I

i i i i i

W
W W

y F e P Mi

δ
δ δ

δ δ θ δ

=
=

⋅ = ⋅ + ⋅∑ ∑ ∑
 

 

In which the first term on the RHS is the internal virtual work done by any truss 

members and the second term is that done by any flexural members. 

 

If a deflection is sought: 

 

0

1

i i i i

L
x

i x
i

y F e P M

PL My P
EA EI

δ δ θ δ

δ δ

⋅ = ⋅ + ⋅

⎛ ⎞ ⎡ ⎤⋅ = ⋅ + ⋅⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

∑ ∑

∑ ∑∫ M dx
 

 

To solve for an indeterminate structure, we have both: 

 

 0 1M M Mα= +  

 0 1P P Pα= +  

 

for the structure as a whole. Hence we have: 
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( ) ( )

( )

1

0

0 1 0 1
1

0

210 1 0 1
1 1

0

0

0 1

0

0

E I

i i i i i i

L
x

i x
i

L
x x

i x

i

L
xx x

i i
i i

W
W W

y F e P M

PL MP M dx
EA EI

P P L M M
P M dx

EA EI

MP L P L M MP P dx
EA EA EI

δ
δ δ

δ δ θ δ

δ δ

α δ α
δ δ

δδ δδ α δ α

=
=

⋅ = ⋅ + ⋅

⎛ ⎞ ⎡ ⎤⋅ = ⋅ + ⋅⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎛ ⎞ ⎡ ⎤+ ⋅ +
⎜ ⎟= ⋅ + ⋅⎢ ⎥
⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⋅
= ⋅ + ⋅ ⋅ + + ⋅⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∑ ∑∫

∑ ∑∫

∑ ∑ ∑∫
0

L

dx
EI∑∫

 

Hence the multiplier can be found as: 

 

( ) ( )

0 1 0 1

0
2 21 1

0

L
i i i

i i

L
i i i

i i

P P L M M dx
EA EI

P L M
dx

EA EI

δ δ

α
δ δ

⋅ ⋅ ⋅+
= −

+

∑ ∑∫

∑ ∑∫
 

 

Note the negative sign! 

 

Though these expressions are cumbersome, the ideas and the algebra are both simple. 

 

Integration of Bending Moments 

We are often faced with the integration of being moment diagrams when using virtual 

work to calculate the deflections of bending members. And as bending moment 

diagrams only have a limited number of shapes, a table of ‘volume’ integrals is used. 
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3. Examples 

3.1 Example 1 

Problem 

 
 

Take 38 10 kNm2EI = ×  and 316 10  kNEA = × . 

 

Solution 

To be done in Class. 
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3.2 Example 2 
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3.3 Example 3 

Problem 

For the following structure, find: 

(a) The force in the cable CD and the bending moment diagram; 

(b) Determine the optimum length of the cable for maximum efficiency of the beam. 

 

 
 

Part (a) 

To be done in class. 
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Part (b) 

Efficiency of the beam means that the moments are resisted by the smallest possible 

beam. Thus the largest moment anywhere in the beam must be made as small as 

possible. Therefore the hogging and sagging moments should be equal: 

 

 
 

We know that the largest hogging moment will occur at 2L . However, we do not 

know where the largest sagging moment will occur. Lastly, we will consider sagging 

moments positive and hogging moments negative. Consider the portion of the net 

bending moment diagram, ( )M x , from 0 to 2L : 

 

 
 

The equations of these bending moments are: 
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 ( )
2P

PM x x= −  

 ( ) 2

2 2W

w wLM x x= − + x  

 

Thus: 

 

 
( ) ( ) ( )

2

2 2 2

W PM x M x M x
wL w Px x x

= +

= − −
 

 

 
 

The moment at 2L  is: 

 

( )
2

2 2

2

2
2 2 2 2 2 2

4 8 4

8 4

wL L w L P LM L

wL wL PL

wL PL

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − −

= −

 

 

Which is as we expected. The maximum sagging moment between 0 and 2L  is 

found at: 
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( )

max

max

0

0
2 2

2 2

dM x
dx

wL Pwx

L Px
w

=

− − =

= −

 

 

Thus the maximum sagging moment has a value: 

 

 

( )
2

max

2 2 2

2 2

2 2 2 2 2 2 2 2 2
2

4 4 2 4 4 4 4 4

8 4 8

wL L P w L P P L PM x
w w

wL PL w L PL P PL P
w w

wL PL P
w

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞= − − − + − +⎜ ⎟
⎝ ⎠

= − +

2

w

w
 

 

Since we have assigned a sign convention, the sum of the hogging and sagging 

moments should be zero, if we are to achieve the optimum BMD. Thus: 

 

 

( ) ( )max

2 2 2

2 2

2
2

2 0

0
8 4 8 8 4

0
4 2 8

1 0
8 2 4

M x M L

wL PL P wL PL
w

wL PL P
w

L wLP P
w

+ =

⎡ ⎤ ⎡− + + − =⎢ ⎥ ⎢⎣ ⎦ ⎣

⎤
⎥⎦

− + =

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

This is a quadratic equation in P and so we solve for P using the usual: 
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( )

2 2

2 4 8
2

8
8
2 2 8

2 2

L L L

P

w
w L L

wL

± −
=

⎛ ⎞= ±⎜ ⎟
⎝ ⎠

= ±

 

Since the load in the cable must be less than the total amount of load in the beam, that 

is, , we have: P wL<

 

 ( )2 2 0.586P wL wL= − =  

 

With this value for P we can determine the hogging and sagging moments: 

 

 

( )
( )2

2

2

2 2
2

8 4
2 2 3

8

0.0214

wL LwLM L

wL

wL

−
= −

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
= −

 

 

And: 

 

 

( )

( )

2 2

max

2

2

2

2

8 4 8

2 22 2 3
8 8

3 2 2
8

0.0214

wL PL PM x
w

wL
wL

w

wL

wL

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤−⎛ ⎞− ⎣ ⎦= +⎜ ⎟
⎝ ⎠
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

= +
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Lastly, the location of the maximum sagging moment is given by: 

 

 
( )

( )

max 2 2
2 2

2 2

2 1
2
0.207

L Px
w

wLL
w

L

L

= −

−
= −

= −

=

 

 

For our particular problem, , 5 kN/mw = 4 mL = , giving: 

 

 ( )0.586 5 4 11.72 kNP = × =  

 ( ) ( )2
max 0.0214 5 4 1.71 kNmM x = × =  

 

Thus, as we expected, , the value obtained from Part (a) of the problem. 10 kNP >

 

Now since, we know P we now also know the required value of the multiplier, α . 

Hence, we write the virtual work equations again, but this time keeping Term 2 in 

terms of L, since that is what we wish to solve for: 

 

 

( )3 5
3

3

5
3

0 2.083 10 8.33 10
16 10

2.083 10 11.72
8.33 10

16 10

L

L

α α

α

− −

−

−

⎛ ⎞= − × + ×⎜ ⎟×⎝ ⎠
×

= =
+ ×

×

 

 

Giving, 1.51 mL =  as the solution. 
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3.4 Example 4 

For the following structure: 

1. Determine the tension in the cable AB; 

2. Draw the bending moment diagram; 

3. Determine the vertical deflection at D with and without the cable AB. 

Take 3 2120 10  kNmEI = ×  and 360 10  kNEA = × . 

 

 
 

As is usual, we choose the cable to be the redundant member and split the frame up 

as follows: 

 

     
Primary Structure    Redundant Structure 
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We must examine the BMDs carefully, and identify expressions for the moments 

around the arch. However, since we will be using virtual work and integrating one 

diagram against another, we immediately see that we are only interested in the 

portion of the structure CB. Further, we will use the anti-clockwise angle from 

vertical as the basis for our integration. 

 

Primary BMD 

Drawing the BMD and identify the relevant distances: 

 

 
 

Hence the expression for 0M  is: 

 

 ( ) ( )0 20 10 2sin 20 1 sinMθ θ θ= + = +  
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Reactant BMD 

This calculation is slightly easier: 

 

 
 

 ( ) ( )1 1 2 2cos 2 1 cosMθ θ θ= ⋅ − = −  

 

Virtual Work Equation 

As before, we have the equation: 

 

( )210 1 0 1
1 1

0 0

0
L L

xx x
i i

i i

MP L P L M MP P dx
EA EA EI EI

δδ δδ α δ α
⎛ ⎞ ⎛ ⎞ ⋅

= ⋅ + ⋅ ⋅ + + ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑∫ ∫ dx  

 

Term 1 is zero since there are no axial forces in the primary structure. We take each 

other term in turn. 

 

Term 2 

Since only member AB has axial force: 

 

 ( )21 2 2Term 2
EA EA

= =  
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Term 3 

Since we want to integrate around the member – an integrand  - but only have the 

moment expressed according to 

ds

θ , we must change the integration limits by 

substituting: 

 

 2ds R d dθ θ= ⋅ =  

 

Hence: 

 

 

( ) ( )

( )( )

( )

20 1

0 0

2

0

2

0

1 2 1 cos 20 1 sin 2

80 1 cos 1 sin

80 1 sin cos cos sin

L
x xM M dx d
EI EI

d
EI

d
EI

π

π

π

δ θ θ θ

θ θ θ

θ θ θ θ

⋅
= − − +⎡ ⎤ ⎡⎣ ⎦ ⎣

= − + +

= − − + +

∑∫ ∫

∫

∫ θ

⎤⎦

 

 

To integrate this expression we refer to the appendix of integrals to get each of the 

terms, which then give: 

 

 

 
( )

20 1

00

80 1cos sin cos2
4

80 1 10 1 1 0 1 0
2 4

80 1 11 1
2 4 4

80 1
2

L
x xM M dx
EI EI

EI

EI

EI

πδ θ θ θ θ

π

π

π

⋅ ⎡ ⎤= − + + −⎢ ⎥⎣ ⎦

⎧ ⎫
4

⎡ ⎤ ⎡ ⎤= − + + − − − − + + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞= − + + − +⎜ ⎟
⎝ ⎠
−⎛ ⎞= ⎜ ⎟

⎝ ⎠

∑∫
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Term 4 

Proceeding similarly to Term 3, we have: 

 

 

( ) ( ) ( )

( )

21 2

0 0

2
2

0

1 2 1 cos 2 1 cos 2

8 1 2cos cos

L
xM

dx d
EI EI

d
EI

π

π

δ
θ θ θ

θ θ θ

= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − +

∑∫ ∫

∫
 

 

Again we refer to the integrals appendix, and so for Term 4 we then have: 

 

 

( ) ( )

[ ]

21 2
2

0 0

2

0

8 1 2cos cos

8 12sin sin 2
2 4

8 12 0 0
2 4 4

8 3 7
4

L
xM

dx d
EI EI

EI

EI

EI

π

π

δ
θ θ θ

θθ θ θ

π π

π

= − +

⎡ ⎤⎛ ⎞= − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

0 0
⎧ ⎫⎡ ⎤⎛ ⎞= − + + − − + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑∫ ∫

 

 

Solution 

Substituting the calculated values into the virtual work equation gives: 

 

2 80 1 8 3 70 0
2 4EA EI EI
π πα α− −⎛ ⎞ ⎛= + ⋅ + + ⋅⎜ ⎟ ⎜

⎝ ⎠ ⎝
⎞
⎟
⎠

 

 

And so: 
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80 1
2

2 8 3 7
4

EI

EA EI

π

α
π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠=

−⎛ ⎞+ ⎜ ⎟
⎝ ⎠

 

 

Simplifying: 

 

20 20

3 7 EI
EA

πα
π

−
=

− +
 

 

In this problem, 2EI EA =  and so: 

 

20 20 9.68 kN
3 5
πα
π
−

= =
−

 

 

We can examine the effect of different ratios of EI EA  on the structure from our 

algebraic solution for α . We show this, as well as a point representing the solution 

for this particular EI EA  ratio on the following graph: 

0

2

4

6

8

10

12

14

16

18

20

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Ratio EI/EA

α
 F

ac
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r
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As can be seen, by choosing a stiffer frame member (increasing EI) or by reducing 

the area of the cable, we can reduce the force in the cable (which is just 1 α⋅ ). 

However this will have the effect of increasing the moment at A, for example: 

 

0

5

10

15

20

25

30

35

40

45

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

Ratio EI/EA

Be
nd

in
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t A
 (k

N
m

)

 
Deflections and shear would also be affected. 

 

Draw the final BMD and determine the deflection at D. 
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3.5 Further Examples 

To be done in class or given out in handout. 
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4. Exercises 

4.1 Problems 

Problem 1 

 

 
 

Find the BMD and the vertical deflection at C. 

(Ans. 7.8α =  for CD, ) 1.93 mmCvδ = ↓

 

Problem 2 

 

 

 

 

 

 

 

 

 

 

 

Dr. C. Caprani 30



Structural Analysis IV 

Problem 3 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 4 
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4.2 Past Exam Questions 

Sample Paper 2007 

 
3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work: 
 

(i) Determine the bending moment moments due to the loads as shown; 
(15 marks) 

 
(ii) Draw the bending moment diagram, showing all important values; 

(4 marks) 
 

(iii) Determine the reactions at A and E; 
(3 marks) 

 
(iv) Draw the deflected shape of the frame. 

(3 marks) 
 
Neglect axial effects in the flexural members. 
Take the following values: 
I for the frame = 150×106 mm4; 
Area of the stay EB = 100 mm2; 
Take E = 200 kN/mm2 for all members. 

 
 

FIG. Q3

2 m

2 
m

2 
m

A

C

D

10 kN

B

E

2 m
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Semester 1 Exam 2007 

 
3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work: 
 

(i) Determine the bending moment moments due to the loads as shown; 
(15 marks) 

 
(ii) Draw the bending moment diagram, showing all important values; 

(4 marks) 
 

(iii) Determine the reactions at A and E; 
(3 marks) 

 
(iv) Draw the deflected shape of the frame. 

(3 marks) 
 
Neglect axial effects in the flexural members. 
Take the following values: 
I for the frame = 150×106 mm4; 
Area of the stay EF = 200 mm2; 
Take E = 200 kN/mm2 for all members. 

 
 

FIG. Q3

4 m

4 
m

4 
m

A

C

D

10 kN

B

4 m

E20 kN

F

 
 

Ans. 35.0α = . 

Dr. C. Caprani 33



Structural Analysis IV 

Semester 1 Exam 2008 

QUESTION 3 

 

For the frame shown in Fig. Q3, using Virtual Work: 

(i) Determine the force in the tie; 
(ii) Draw the bending moment diagram, showing all important values; 
(iii) Determine the deflection at C; 
(iv) Determine an area of the tie such that the bending moments in the beam are minimized; 
(v) For this new area of tie, determine the deflection at C; 
(vi) Draw the deflected shape of the structure. 

 

(25 marks) 

 

Note: 

Neglect axial effects in the flexural members and take the following values: 

• For the frame, ; 6 4600 10  mmI = ×
• For the tie, ; 2300 mmA =
• For all members, . 2200 kN/mmE =

 

 

D

4 
m

A

2 m

FIG. Q3

2 m

B C

20 kN/m

TIE

 

Ans. 21.24α = ; ;4.1 mmCyδ = ↓ 22160 mmA = ; 2.0 mmCyδ = ↓  
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Semester 1 Exam 2009 

QUESTION 3 

 

For the frame shown in Fig. Q3, using Virtual Work: 

 

(i) Determine the axial forces in the members; 
(ii) Draw the bending moment diagram, showing all important values; 
(iii) Determine the reactions; 
(iv) Determine the vertical deflection at D; 
(v) Draw the deflected shape of the structure. 

 

(25 marks) 

 

Note: 

Neglect axial effects in the flexural members and take the following values: 

• For the beam ABCD, ; 6 4600 10  mmI = ×
• For members BF and CE, ; 2300 mmA =
• For all members, . 2200 kN/mmE =

 

E

3 
m

A

3 m

FIG. Q3

4 m

C D

F

3 
m

1 m

60 kN

B

Ans. 113.7α =  (for CE);  55 mmDyδ = ↓
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5. Appendix – Trigonometric Integrals 

5.1 Useful Identities 

In the following derivations, use is made of the trigonometric identities: 

 

 1cos sin sin 2
2

θ θ = θ  (1.1) 

 

 (2 1cos 1 cos2
2

)θ θ= +  (1.2) 

 

 (2 1sin 1 cos2
2

)θ θ= −  (1.3) 

 

Integration by parts is also used: 

 

 u dx ux x du C= − +∫ ∫  (1.4) 
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5.2 Basic Results 

Neglecting the constant of integration, some useful results are: 

 

 cos sindθ θ =∫ θ  (2.1) 

 

 sin cosdθ θ = −∫ θ  (2.2) 

 

 
1sin cosa d a
a

θ θ = −∫ θ  (2.3) 

 

 
1cos sina d a
a

θ θ =∫ θ  (2.4) 
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5.3 Common Integrals 

The more involved integrals commonly appearing in structural analysis problems are: 

 

cos sin dθ θ θ∫  

Using identity (1.1) gives: 

 

 1cos sin sin 2
2

d dθ θ θ θ θ=∫ ∫  

 

Next using (2.3), we have: 

 

 

1 1 1sin 2 cos2
2 2 2

1 cos2
4

dθ θ θ

θ

⎡ ⎤= −⎢ ⎥⎣ ⎦

= −

∫
 

 

And so: 

 

 1cos sin cos2
4

dθ θ θ θ= −∫  (3.1) 
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2cos dθ θ∫  

Using (1.2), we have: 

 

 
( )2 1cos 1 cos2

2
1 1 cos2
2

d d

d d

θ θ θ θ

θ θ θ

= +

⎡ ⎤= +⎣ ⎦

∫ ∫

∫ ∫
 

 

Next using (2.4): 

 

 

1 11 cos2 sin 2
2 2

1 sin 2
2 4

d d 1
2

θ θ θ θ θ

θ θ

⎡ ⎤⎡ ⎤+ = +⎣ ⎦ ⎢ ⎥⎣ ⎦

= +

∫ ∫
 

 

And so: 

 

 2 1cos sin 2
2 4

d θθ θ = +∫ θ  (3.2) 
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2sin dθ θ∫  

Using (1.3), we have: 

 

 
( )2 1sin 1 cos2

2
1 1 cos2
2

d d

d d

θ θ θ θ

θ θ θ

= −

⎡ ⎤= −⎣ ⎦

∫ ∫

∫ ∫
 

 

Next using (2.4): 

 

 

1 11 cos2 sin 2
2 2

1 sin 2
2 4

d d 1
2

θ θ θ θ θ

θ θ

⎡ ⎤⎡ ⎤− = −⎣ ⎦ ⎢ ⎥⎣ ⎦

= −

∫ ∫
 

 

And so: 

 

 2 1sin sin 2
2 4

d θθ θ = −∫ θ  (3.3) 
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cos dθ θ θ∫  

Using integration by parts write: 

 

  cos d u dθ θ θ =∫ ∫ x

d

 

Where: 

 

 cosu dxθ θ θ= =  

 

To give: 

 

 du dθ=  

 

And 

 

 cos

sin

dx d

x

θ θ

θ

=

=
∫ ∫  

 

Which uses (2.1). Thus, from (1.4), we have: 

 

 
cos sin sin

u dx ux x du

d dθ θ θ θ θ θ θ

= −

= −
∫ ∫

∫ ∫
 

 

And so, using (2.2) we have: 

 

 cos sin cosdθ θ θ θ θ θ= +∫  (3.4) 
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sin dθ θ θ∫  

Using integration by parts write: 

 

  sin d u dθ θ θ =∫ ∫ x

d

 

Where: 

 

 sinu dxθ θ θ= =  

 

To give: 

 

 du dθ=  

 

And 

 

 sin

cos

dx d

x

θ θ

θ

=

= −
∫ ∫  

 

Which uses (2.2). Thus, from (1.4), we have: 

 

 
( ) ( )sin cos cos

u dx ux x du

d dθ θ θ θ θ θ θ

= −

= − − −
∫ ∫

∫ ∫
 

 

And so, using (2.1) we have: 

 

 sin cos sindθ θ θ θ θ θ= − +∫  (3.5) 
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( )cos A dθ θ−∫  

Using integration by substitution, we write u A θ= −  to give: 

 

 1du
d
du d
θ

θ

= −

= −
 

 

Thus: 

 

 ( ) ( )cos cosA d uθ θ− = −∫ ∫ du  

 

And since, using (2.1): 

 

  cos sinu du u− = −∫
 

We have: 

 

 ( ) ( )cos sinA d Aθ θ θ− = − −∫  (3.6) 
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( )sin A dθ θ−∫  

Using integration by substitution, we write u A θ= −  to give: 

 

 1du
d
du d
θ

θ

= −

= −
 

 

Thus: 

 

 ( ) ( )sin sinA d uθ θ− = −∫ ∫ du  

 

And since, using (2.2): 

 

 ( )sin cosu du u− = − −∫  

 

We have: 

 

 ( ) ( )sin cosA d Aθ θ θ− = −∫  (3.7) 
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6. Appendix – Volume Integrals 

 
l

j

 l

j

 l

jj1 2

 l

j

 

l

k

 

1
3

jkl  1
6

jkl  ( )1 2
1 2
6

j j+ kl  1
2

jkl  

l

k

 

1
6

jkl  1
3

jkl  ( )1 2
1 2
6

j j k+ l  1
2

jkl  

l

kk1 2

 
( )1 2

1 2
6

j k k l+  ( )1 2
1 2
6

j k k+ l  
( )

( )

1 1 2

2 1 2

1 2
6

2

j k k

j k k l

+ +⎡⎣

+ ⎤⎦

 ( )1 2
1
2

j k k l+  

l

k

 

1
2

jkl  1
2

jkl  ( )1 2
1
2

j j k+ l  jkl  

a b

k

 
( )1

6
jk l a+  ( )1

6
jk l b+  

( )

( )

1

2

1
6

j l b

j l a k

+ +⎡⎣

+ ⎤⎦

 1
2

jkl  

l
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7. Ring Beam Examples (Advanced) 

7.1 Example 1 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the deflection at A due to the point load, P, at A is: 

 

 
3 3 3 8

4 4Ay

PR PR
EI GJ

π πδ −⎛= ⋅ + ⎜
⎝ ⎠

⎞
⎟   
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Solution 

The point load will cause both bending and torsion in the beam member. Therefore 

both effects must be accounted for in the deflection calculations. Shear effects are 

ignored. 

 

Drawing a plan view of the structure, we can identify the perpendicular distance of 

the force, P, from the section of consideration, which we locate by the angle θ  from 

the y-axis: 

 

 
 

The bending moment at C is P times the perpendicular distance AC , called m. The 

torsion at C is the force times the transverse perpendicular distance CD , called t. 

Using the triangle ODA, we have: 
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sin sin

cos cos

m m R
R
OD

OD R
R

θ θ

θ θ

= ∴ =

= ∴ =
 

 

The distance CD , or t, is R OD− , thus: 

 

 

( )
cos

1 cos

t R OD
R R
R

θ
θ

= −

= −

= −

 

 

Thus the bending moment at point C is: 

 

 ( )
sin

M Pm
PR

θ
θ

=

=
 (1.1) 

 

The torsion at C is: 

 

 
( )

( )1 cos

T Pt

PR

θ

θ

=

= −
 (1.2) 

 

Using virtual work, we have: 

 

 
0

E I

Ay

W
W W

M TF M ds T ds
EI GJ

δ
δ δ

δ δ δ δ

=
=

⋅ = ⋅ + ⋅∫ ∫

 (1.3) 
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This equation represents the virtual work done by the application of a virtual force, 

Fδ , in the vertical direction at A, with its internal equilibrium virtual moments and 

torques, Mδ  and Tδ  and so is the equilibrium system. The compatible 

displacements system is that of the actual deformations of the structure, externally at 

A, and internally by the curvatures and twists, M EI  and T GJ . 

 

Taking the virtual force, 1Fδ = , and since it is applied at the same location and 

direction as the actual force P, we have, from equations (1.1) and (1.2): 

 

 ( ) sinM Rδ θ θ=  (1.4) 

 

 ( ) ( )1 cosT Rδ θ θ= −  (1.5) 

 

Thus, the virtual work equation, (1.3), becomes: 

 

 
[ ][ ] ( ) ( )

2 2

0 0

1 11

1 1sin sin 1 cos 1 cos

Ay M M ds T T ds
EI GJ

PR R Rd PR R Rd
EI GJ

π π

δ δ δ

θ θ θ θ θ

⋅ = ⋅ + ⋅

= + −⎡ ⎤ ⎡⎣ ⎦ ⎣

∫ ∫

∫ ∫ θ− ⎤⎦

 (1.6) 

 

In which we have related the curve distance, , to the arc distance, dsds Rdθ= , which 

allows us to integrate round the angle rather than along the curve. Multiplying out: 

 

 ( )
2 23 3

22

0 0

sin 1 cosAy
PR PRd
EI GJ

π π

dδ θ θ θ θ= + −∫ ∫  (1.7) 

  

Considering the first term, from the integrals’ appendix, we have: 

 

Dr. C. Caprani 49



Structural Analysis IV 

 ( )

22
2

00

1sin sin 2
2 4

1 0 0 0
4 4

4

d
ππ θθ θ θ

π

π

⎡ ⎤= −⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞= − ⋅ − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

∫

 (1.8) 

 

The second term is: 

 

 
( ) ( )

2 2
2 2

0 0

2 2 2
2

0 0 0

1 cos 1 2cos cos

1 2 cos cos

d d

d d

π π

π π π

θ θ θ θ θ

dθ θ θ θ θ

− = − +

= − +

∫ ∫

∫ ∫ ∫
 (1.9) 

 

Thus, from the integrals in the appendix: 

 

 

( ) [ ] [ ]

( ) ( ) ( ) ( )

22
2 22

0 0
00

11 cos 2 sin sin 2
2 4

10 2 1 0 0 0 0
2 4 4

2
2 4
3 8

4

d
ππ

π π θθ θ θ θ θ

π π

π π

π

⎡ ⎤− = − + +⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞= − − − + + ⋅ − +⎡ ⎤⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣

= − +

−
=

∫
⎤
⎥
⎦  (1.10) 

 

Substituting these results back into equation (1.7) gives the desired result: 

 

 
3 3 3 8

4 4Ay
PR PR
EI GJ

π πδ −⎛= + ⎜
⎝ ⎠

⎞
⎟  (1.11) 
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7.2 Example 2 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the deflection at A due to the uniformly distributed 

load, w, shown is: 

 

 ( )24 4 21
2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅   
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Solution 

The UDL will cause both bending and torsion in the beam member and both effects 

must be accounted for. Again, shear effects are ignored. 

 

 
 

Drawing a plan view of the structure, we must identify the moment and torsion at 

some point C, as defined by the angle θ  from the y-axis, caused by the elemental 

load at E, located at φ  from the y-axis. The load is given by: 

 

 
Force UDL length

w ds
w R dφ

= ×
= ⋅
= ⋅

 (2.1) 
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The bending moment at C is the load at E times the perpendicular distance DE , 

labelled m. The torsion at C is the force times the transverse perpendicular distance 

CD , labelled t. Using the triangle ODE, we have: 

 

 
( ) ( )

( ) ( )

sin sin

cos cos

m m R
R
OD

OD R
R

θ φ θ φ

θ φ θ

− = ∴ = −

− = ∴ = −φ
 

 

The distance t is thus: 

 

 ( )
( )

cos

1 cos

t R OD

R R

R

θ φ

θ φ

= −

= − −

= − −⎡ ⎤⎣ ⎦

 

 

The differential bending moment at point C, caused by the elemental load at E is 

thus: 

 

 

( )
[ ]
[ ] ( )

( )2

Force Distance

sin

sin

dM

wRd m

wRd R

wR d

θ

φ

φ θ φ

θ φ φ

= ×

= ×

= −⎡ ⎤⎣ ⎦
= −

  

 

Integrating to find the total moment at C caused by the UDL from A to C around the 

angle 0 to θ  gives: 
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( ) ( )

( )

( )

2

0

2

0

sin

sin

M dM

wR d

wR d

φ θ

φ

φ θ

φ

θ θ

θ φ φ

θ φ φ

=

=

=

=

=

= −

= −

∫

∫

∫

  

 

In this integral θ  is a constant and only φ  is considered a variable. Using the identity 

from the integral table gives: 

 

 
( ) ( )

( )

2

0

2

cos

cos0 cos

M wR

wR

φ θ

φ
θ θ φ

θ

=

=
= −⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦
  

 

And so: 

 

 ( ) ( )2 1 cosM wRθ θ= −  (2.2) 

 

Along similar lines, the torsion at C caused by the load at E is: 

 

 

( ) [ ]
[ ] ( ){

( )2

1 cos

1 cos

dT wRd t

wRd R

wR d

}
θ φ

φ θ φ

θ φ φ

= ×

= − −⎡ ⎤⎣ ⎦

= − −⎡ ⎤⎣ ⎦

  

 

And integrating for the total torsion at C: 
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( ) ( )

( )

( )

( )

2

0

2

0

2

0 0

1 cos

1 cos

1 cos

T dT

wR d

wR d

wR d d

φ θ

φ

φ θ

φ

φ θ φ θ

φ φ

θ θ

θ φ φ

θ φ φ

φ θ φ φ

=

=

=

=

= =

= =

=

= − −⎡ ⎤⎣ ⎦

= − −⎡ ⎤⎣ ⎦

⎧ ⎫
= − −⎨ ⎬

⎩ ⎭

∫

∫

∫

∫ ∫

 

 

Using the integral identity for ( )cos θ φ−  gives: 

 

 
( ) [ ] ( ){ }

[ ]{ }

2

0 0

2

sin

sin 0 sin

T wR

wR

φ θφ θ

φ φ
θ φ θ φ

θ θ

==

= =
= − − −⎡ ⎤⎣ ⎦

= + −
 

 

And so the total torsion at C is: 

 

 ( ) ( )2 sinT wRθ θ θ= −  (2.3) 

 

To determine the deflection at A, we apply a virtual force, Fδ , in the vertical 

direction at A. Along with its internal equilibrium virtual moments and torques, Mδ  

and Tδ  and this set forms the equilibrium system. The compatible displacements 

system is that of the actual deformations of the structure, externally at A, and 

internally by the curvatures and twists, M EI  and T GJ . Therefore, using virtual 

work, we have: 

 

 
0

E I

Ay

W
W W

M TF M ds T ds
EI GJ

δ
δ δ

δ δ δ δ

=
=

⋅ = ⋅ + ⋅∫ ∫

 (2.4) 
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Taking the virtual force, 1Fδ = , and using the equation for moment and torque at 

any angle θ  from Example 1, we have: 

 

 ( ) sinM Rδ θ θ=  (2.5) 

 

 ( ) ( )1 cosT Rδ θ θ= −  (2.6) 

 

Thus, the virtual work equation, (2.4), using equations (2.2) and (2.3), becomes: 

 

 ( ) [ ]

( ) ( )

2
2

0

2
2

0

1 11

1 1 cos sin

1 sin 1 cos

Ay M M ds T T ds
EI GJ

wR R Rd
EI

wR R Rd
GJ

π

π

δ δ δ

θ θ θ

θ θ θ

⋅ = ⋅ + ⋅

⎡ ⎤= −⎣ ⎦

⎡ ⎤+ − −⎡ ⎤⎣ ⎦⎣ ⎦

∫ ∫

∫

∫ θ

 (2.7) 

 

In which we have related the curve distance, , to the arc distance, ds ds Rdθ=  

allowing us to integrate round the angle rather than along the curve. Multiplying out: 

 

 
( )

( )

24

0

24

0

sin sin cos

sin cos cos sin

Ay
wR d
EI

wR d
GJ

π

π

δ θ θ θ θ

θ θ θ θ θ θ θ

= −

+ − − +

∫

∫
 (2.8) 

 

Using the respective integrals from the appendix yields: 
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( )

( ) ( )

24

0

24 2

0

4

4 2

4

4 2

1cos cos2
4

1cos sin cos cos2
2 4

1 10 1
4 4

1 10 1 0 1 0 1 0 1
8 2 4 4

1
2

1 1
8 2 4 4

Ay
wR
EI

wR
GJ

wR
EI

wR
GJ

wR
EI

wR
GJ

π

π

δ θ θ

θ θ θ θ θ θ

π π

π π

⎡ ⎤= − +⎢ ⎥⎣ ⎦

⎡ ⎤
+ + − + −⎢ ⎥

⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= − − − − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛+ + − ⋅ + − − − + − + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠ ⎝⎝ ⎠⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡

+ − + +
⎣

⎤
⎢ ⎥

⎦

⎞
⎟
⎠

  
 

Writing the second term as a common fraction: 

 

 
4 4 21 4

2 8Ay
wR wR
EI GJ

π πδ
⎛ 4 ⎞− +

= ⋅ + ⎜
⎝ ⎠

⎟   

 

And then factorising, gives the required deflection at A: 

 

 
( )224 4 21

2 8Ay
wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (2.9) 
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7.3 Example 3 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the vertical reaction at A due to the uniformly 

distributed load, w, shown is: 

 

 ( )
( )

24 2
2 2 3 8AV wR

β π
βπ π

⎡ ⎤+ −
= ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
  

 

where GJ
EI

β = . 
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Solution 

This problem can be solved using two apparently different methods, but which are 

equivalent. Indeed, examining how they are equivalent leads to insights that make 

more difficult problems easier, as we shall see in subsequent problems. For both 

approaches we will make use of the results obtained thus far: 

• Deflection at A due to UDL: 

 

 ( )24 4 21
2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (3.1) 

 

• Deflection at A due to point load at A: 

 

 
3 3 3 8

4 4Ay

PR PR
EI GJ

π πδ −⎛= ⋅ + ⎜
⎝ ⎠

⎞
⎟  (3.2) 

 

Using Compatibility of Displacement 

The basic approach, which does not require virtual work, is to use compatibility of 

displacement in conjunction with superposition. If we imagine the support at A 

removed, we will have a downwards deflection at A caused by the UDL, which 

equation (3.1) gives us as: 

 

 ( )24 4
0 21

2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (3.3) 

 

As illustrated in the following diagram. 
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Since in the original structure we will have a support at A we know there is actually 

no displacement at A. The vertical reaction associated with the support at A, called V, 

must therefore be such that it causes an exactly equal and opposite deflection, V
Ayδ , to 

that of the UDL, 0
Ayδ , so that we are left with no deflection at A: 

 

 0 0V
Ay Ayδ δ+ =  (3.4) 

 

Of course we don’t yet know the value of V, but from equation (3.2), we know the 

deflection caused by a unit load placed in lieu of V: 

 

 
3 3

1 1 1 3
4 4Ay

R R
EI GJ

π πδ 8⋅ ⋅ −⎛= ⋅ + ⎜
⎝ ⎠

⎞
⎟  (3.5) 
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This is shown in the following diagram: 

 

 

 

 

Using superposition, we know that the deflection caused by the reaction, V, is V times 

the deflection caused by a unit load: 

 

 1V
Ay AyVδ δ= ⋅  (3.6) 

 

Thus equation (3.4) becomes: 

 

 0 1 0Ay AyVδ δ+ ⋅ =  (3.7) 

 

Which we can solve for V: 
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0

1
Ay

Ay

V
δ
δ

= −  (3.8) 

 

If we take downwards deflections to be positive, we then have, from equations(3.3),  

(3.5), and (3.8): 

 

 

( )24 4

3 3

21
2 8

1 1 3
4 4

wR wR
EI GJ

V
R R

EI GJ

π

π π

⎛ ⎞−
⋅ + ⋅⎜ ⎟⎜ ⎟

⎝= −
⎡ ⋅ ⋅ − ⎤⎛ ⎞− ⋅ + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

8
⎠  (3.9) 

 

The two negative signs cancel, leaving us with a positive value for V indicating that it 

is in the same direction as the unit load, and so is upwards as expected. Introducing 

GJ
EI

β =  and doing some algebra on equation (3.9) gives: 

 

 

( )

( )

( ) ( )

( )
( )

12

12

12

2

21 1 1 1 1 3 8
2 8 4 4

21 1 1 3 8
2 8 4 4

4 2 3 8
8 4

4 2 8
8 2 2 3 8

V wR
EI EI EI EI

wR

wR

wR

π π π
β β

π π π
β β

β π βπ π
β β

β π β
β βπ π

−

−

−

⎛ ⎞− ⎡ ⎤−⎛ ⎞= ⋅ + ⋅ × ⋅ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞− ⎡ ⎤−⎛ ⎞= + ⋅ × +⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞+ − + −⎡ ⎤

= ×⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠
⎛ ⎞ ⎡ ⎤+ −

= ×⎜ ⎟ ⎢ ⎥⎜ ⎟ + −⎣ ⎦⎝ ⎠

 

 

And so we finally have the required reaction at A as: 
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 ( )
( )

24 2
2 2 3 8AV wR

β π
βπ π

⎛ ⎞+ −
= ⎜⎜ + −⎝ ⎠

⎟⎟

ds

 (3.10) 

 

Using Virtual Work 

To calculate the reaction at A using virtual work, we use the following: 

• Equilibrium system: the external and internal virtual forces corresponding to a 

unit virtual force applied in lieu of the required reaction; 

• Compatible system: the real external and internal displacements of the original 

structure subject to the real applied loads. 

Thus the virtual work equations are: 

 

 
0

E I

Ay

W
W W

F M ds T

δ
δ δ

δ δ κ δ φ δ

=
=

⋅ = ⋅ + ⋅∫ ∫
 (3.11) 

 

At this point we introduce some points: 

• The real external deflection at A is zero: 0Ayδ = ; 

• The virtual force, 1Fδ = ; 

• The real curvatures can be expressed using the real bending moments, M
EI

κ = ; 

• The real twists are expressed from the torque, 
T

GJ
φ = . 

These combine to give, from equation (3.11): 

 

 
0 0

0 1
L LM TM ds T ds

EI GJ
δ⎡ ⎤ ⎡ ⎤⋅ = ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫ δ  (3.12) 
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Next, we use superposition to express the real internal ‘forces’ as those due to the real 

loading applied to the primary structure plus a multiplier times those due to the unit 

virtual load applied in lieu of the reaction: 

 

 0 1 0 1M M M T T Tα α= + = +  (3.13) 

 

Notice that 1M Mδ =  and 1T Tδ = , but they are still written with separate notation to 

keep the ideas clear. Thus equation (3.12) becomes: 

 

 

( ) ( )0 1 0 1

0 0

0 1 0 1

0 0 0 0

0

0

L L

L L L L

M M T T
M ds T ds

EI GJ

M M T TM ds M ds T ds T ds
EI EI GJ GJ

α α
δ δ

δ α δ δ α δ

⎡ ⎤ ⎡ ⎤+ +
= ⋅ + ⋅⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅

∫ ∫

∫ ∫ ∫ ∫

 (3.14) 

 

And so finally: 

 

 

0 0

0 0
1 1

0 0

L L

L L

M TM ds T ds
EI GJ

M TM ds T ds
EI GJ

δ δ
α

δ δ

⎡ ⎤
⋅ + ⋅⎢ ⎥

⎣= −
⎡ ⎤

⋅ + ⋅⎢ ⎥
⎣ ⎦

∫ ∫

∫ ∫

⎦  (3.15) 

 

At this point we must note the similarity between equations (3.15) and (3.8). From 

equation (1.3), it is clear that the numerator in equation (3.15) is the deflection at A of 

the primary structure subject to the real loads. Further, from equation (2.4), the 

denominator in equation (3.15) is the deflection at A due to a unit (virtual) load at A. 

 

Neglecting signs, and generalizing somewhat, we can arrive at an ‘empirical’ 

equation for the calculation of redundants: 
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of primary structure along due to actual loads  
line of action of redundant due to unit redundant

δα
δ

⎫
= ⎬

⎭
 (3.16) 

 

Using this form we will quickly be able to determine the solutions to further ring-

beam problems. 

 

The solution for α  follows directly from the previous examples: 

• The numerator is determined as per Example 1; 

• The denominator is determined as per Example 2, with 1P = . 

Of course, these two steps give the results of equations (3.3) and (3.5) which were 

used in equation (3.8) to obtain equation (3.9), and leading to the solution, equation 

(3.10). 

 

From this it can be seen that compatibility of displacement and virtual work are 

equivalent ways of looking at the problem. Also it is apparent that the virtual work 

framework inherently calculates the displacements required in a compatibility 

analysis. Lastly, equation (3.16) provides a means for quickly calculating the 

redundant for other arrangements of the structure from the existing solutions, as will 

be seen in the next example. 
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7.4 Example 4 

Problem 

For the structure shown, the quarter-circle beam has flexural and torsional rigidities 

of EI and GJ respectively and the cable has axial rigidity EA, show that the tension in 

the cable due to the uniformly distributed load, w, shown is: 

 

 ( ) ( )
1

2

34 2 2 2 3 8 8 LT wR
R

ββ π πβ π
γ

−
⎡ ⎤⎡ ⎤= + − + − + ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 

where GJ
EI

β =  and EA
EI

γ = . 
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Solution 

For this solution, we will use the insights gained from Example 3, in particular 

equation (3.16). We will then verify this approach using the usual application of 

virtual work. We will be choosing the cable as the redundant throughout. 

 

Empirical Form 

Repeating our ‘empirical’ equation here: 

 

 
of primary structure along due to actual loads  
line of action of redundant due to unit redundant

δα
δ

⎫
= ⎬

⎭
 (4.1) 

 

We see that we already know the numerator: the deflection at A in the primary 

structure, along the line of the redundant (vertical, since the cable is vertical), due to 

the actual loads on the structure is just the deflection of Example 1: 

 

 ( )24 4
0 21

2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (4.2) 

 

This is shown below: 
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Next we need to identify the deflection of the primary structure due to a unit 

redundant, as shown below: 

 

 
 

The components that make up this deflection are: 

• Deflection of curved beam caused by unit load (bending and torsion); 

• Deflection of the cable AC caused by the unit tension. 

The first of these is simply the unit deflection of Example 3, equation (3.5): 

 

 ( )
3 3

1 1 1 3beam
4 4Ay

R R
EI GJ

π πδ 8⋅ ⋅ −⎛= ⋅ + ⎜
⎝ ⎠

⎞
⎟  (4.3) 

 

The second of these is not intuitive, but does feature in the virtual work equations, as 

we shall see. The elongation of the cable due to a unit tension is: 
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 ( )1 1cableAy

L
EA

δ ⋅
=  (4.4) 

 

Thus the total deflection along the line of the redundant, of the primary structure, due 

to a unit redundant is: 

 

 
( ) ( )1 1 1

3 3

beam cable

1 1 3 8
4 4

Ay Ay Ay

1R R L
EI GJ

δ δ δ

π π

= +

⋅ ⋅ −⎛ ⎞= ⋅ + +⎜ ⎟
⎝ ⎠ EA

⋅  (4.5) 

 

Both sets of deflections (equations (4.3) and (4.5)) are figuratively summarized as: 

 

 
 

And by making 0
Ay AyT 1δ δ= , where T is the tension in the cable, we obtain our 

compatibility equation for the redundant. Thus, from equations (4.1), (4.2) and (4.5) 

we have: 
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( )24 4

3 3

21
2 8

1 1 3 8 1
4 4

wR wR
EI GJ

T
R R L

EI GJ E

π

π π

⎡ ⎤−
⋅ + ⋅⎢ ⎥

⎢⎣=
⎡ ⋅ ⋅ − ⋅ ⎤⎛ ⎞⋅ + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦A

⎥⎦  (4.6) 

 

Setting GJ
EI

β =  and EA
EI

γ = , and performing some algebra gives: 

 

 

( )

( ) ( )

( ) ( )

12

3

12

3

1

2 3

21 1 1 1 1 3 8
2 8 4 4

4 2 3 8
8 4

82 2 3 84 2
8 8

LT wR
EI EI EI EI R EI

LwR
R

L
RwR

π π π
β β

β π βπ π
β β γ

ββπ πβ π γ
β β

−

−

−

⎡ ⎤−
γ

⎡ ⎤−⎛ ⎞= ⋅ + ⋅ ⋅ + +⎢ ⎥ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤+ − + −⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤+ − +⎡ ⎤+ − ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (4.7) 

 

Which finally gives the required tension as: 

 

 ( ) ( )
1

2

34 2 2 2 3 8 8 LT wR
R

ββ π πβ π
γ

−
⎡ ⎤⎡ ⎤= + − + − + ⋅⎢ ⎥⎣ ⎦ ⎣ ⎦

 (4.8) 

 

Comparing this result to the previous result, equation (3.10), for a pinned support at 

A, we can see that the only difference is the term related to the cable: 38 L
R

β
γ
⋅ . Thus 

the ‘reaction’ (or tension in the cable) at A depends on the relative stiffnesses of the 

beam and cable (through the 
3R

EI
,  

3R
GJ

 and L
EA

 terms inherent through γ  and β ).  

This dependence on relative stiffness is to be expected. 
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Formal Virtual Work Approach 

Without the use of the insight that equation (4.1) gives, the more formal application 

of virtual work will, of course, yield the same result. To calculate the tension in the 

cable using virtual work, we use the following: 

• Equilibrium system: the external and internal virtual forces corresponding to a 

unit virtual force applied in lieu of the redundant; 

• Compatible system: the real external and internal displacements of the original 

structure subject to the real applied loads. 

Thus the virtual work equations are: 

 

 
0

E I

Ay

W
W W

F M ds T ds e P

δ
δ δ

δ δ κ δ φ δ δ

=
=

⋅ = ⋅ + ⋅ + ⋅∑∫ ∫
 (4.9) 

 

In this equation we have accounted for all the major sources of displacement (and 

thus virtual work). At this point we acknowledge: 

• There is no external virtual force applied, only an internal tension, thus 0Fδ = ; 

• The real curvatures and twists are expressed using the real bending moments and 

torques as M
EI

κ =  and 
T

GJ
φ =  respectively; 

• The elongation of the cable is the only source of axial displacement and is 

written in terms of the real tension in the cable, P, as PLe
EA

= . 

These combine to give, from equation (4.9): 

 

 
0 0

0
L L

Ay
M T PLM ds T ds P
EI GJ EA

δ δ δ⎡ ⎤ ⎡ ⎤ δ⋅ = ⋅ + ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  (4.10) 

 

As was done in Example 3, using superposition, we write: 
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 0 1 0 1 0 1M M M T T T P P Pα α= + = + = +α  (4.11) 

 

However, we know that there is no tension in the cable in the primary structure, since 

it is the cable that is the redundant and is thus removed, hence 0 0P = . Using this and 

equation (4.11) in equation (4.10) gives: 

 

 
( ) ( ) ( )0 1 0 1 1

0 0

0
L LM M T T P L

M ds T ds P
EI GJ EA
α α α

δ δ
⎡ ⎤ ⎡ ⎤+ +

= ⋅ + ⋅ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫ δ⋅  (4.12) 

 

Hence: 

 

 

0 1

0 0

0 1

0 0

1

0
L L

L L

M MM ds M ds
EI EI

T TT ds T ds
GJ GJ

P L P
EA

δ α δ

δ α δ

α δ

= ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅

+ ⋅ ⋅

∫ ∫

∫ ∫  (4.13) 

 

And so finally: 

 

 

0 0

0 0
1 1 1

0 0

L L

L L

M TM ds T ds
EI GJ

M T P LM ds T ds P
EI GJ EA

δ δ
α

δ δ δ

⎡ ⎤
⋅ + ⋅⎢ ⎥

⎣= −
⎡ ⎤

⋅ + ⋅ + ⋅⎢ ⎥
⎣ ⎦

∫ ∫

∫ ∫

⎦  (4.14) 

 

Equation (4.14) matches equation (3.15) except for the term relating to the cable. 

Thus the other four terms are evaluated exactly as per Example 3. The cable term, 
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1P L P
EA

δ⋅ , is easily found once it is recognized that 1 1P Pδ= =  as was the case for the 

moment and torsion in Example 3. With all the terms thus evaluated, equation (4.14) 

becomes the same as equation (4.6) and the solution progresses as before. 

 

The virtual work approach yields the same solution, but without the added insight of 

the source of each of the terms in equation (4.14) represented by equation (4.1). 
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7.5 Example 5 

Problem 

For the structure shown, the quarter-circle beam has the properties: 

• torsional rigidity of GJ; 

• flexural rigidity about the local y-y axis YEI ; 

• flexural rigidity about the local z-z axis ZEI . 

The cable has axial rigidity EA. Show that the tension in the cable due to the 

uniformly distributed load, w, shown is: 

 

 ( ) ( )
12

2

4 2 1 1 8 21 3 8
2

T wR
R

β π
π π

λ β γβ

−
⎡ ⎤ ⎡ ⎤+ − ⎛ ⎞= + + −⎢ ⎥ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦
 

 

where 
Y

GJ
EI

β = , 
Y

EA
EI

γ =  and Z

Y

EI
EI

λ = . 
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Solution 

We will carry out this solution using both the empirical and virtual work approaches 

as was done for Example 4. However, it is in this example that the empirical 

approach will lead to savings in effort over the virtual work approach, as will be seen. 

 

Empirical Form 

Repeating our empirical equation: 

 

 
of primary structure along due to actual loads  
line of action of redundant due to unit redundant

δα
δ

⎫
= ⎬

⎭
 (5.1) 

 

We first examine the numerator with the following y-z axis elevation of the primary 

structure loaded with the actual loads: 

 

 
 

Noting that it is the deflection along the line of the redundant that is of interest, we 

can draw the following: 
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The deflection Azδ , which is the distance 'AA  is known from Example 2 to be: 

 

 ( )24 4 21
2 8Az

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (5.2) 

 

It is the deflection ''AA  that is of interest here. Since the triangle A-A’-A’’ is a 1-1-

2  triangle, we have: 

 

 , 4 2
Az

A π

δδ =  (5.3) 

 

And so the numerator is thus: 

 

 ( )24 4
0 2

2 2 8 2A

wR wR
GJEI

π
δ

−
= + ⋅  (5.4) 
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To determine the denominator of equation (5.1) we must apply a unit load in lieu of 

the redundant (the cable) and determine the deflection in the direction of the cable.  

 

Firstly we will consider the beam. We can determine the deflection in the z- and y-

axes separately and combine, by examining the deflections that the components of the 

unit load cause: 

 

 
 

To find the deflection that a force of 1
2

 causes in the z- and y-axes directions, we 

will instead find the deflections that unit loads cause in these directions, and then 

divide by 2 .  

 

Since we are now calculating deflections in two orthogonal planes of bending, we 

must consider the different flexural rigidities the beam will have in these two 
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directions: YEI  for the horizontal plane of bending (vertical loads), and ZEI  for loads 

in the x-y plane, as shown in the figure: 

 

 
 

First, consider the deflection at A in the z-direction, caused by a unit load in the z-

direction, as shown in the following diagram. This is the same as the deflection 

calculated in Example 1 and used in later examples: 

 

 
3 3

1 1 1 3
4 4Az

Y

R R
EI GJ

π πδ 8⋅ ⋅ −⎛= ⋅ + ⎜
⎝ ⎠

⎞
⎟  (5.5) 
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Considering the deflection at A in the y-direction next, we see from the following 

diagram that we do not have this result to hand, and so must calculate it: 
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Looking at the elevation of the x-y plane, we have: 

 

 
 

The lever arm, m, is: 

 

 sinm R θ=  (5.6) 

 

Thus the moment at point C is: 

 

 ( ) 1 1 sinM m Rθ θ= ⋅ = ⋅  (5.7) 

 

Using virtual work: 
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0

1
E I

Ay

W
W W

M ds

δ
δ δ

δ κ δ

=
=

⋅ = ⋅∫
 (5.8) 

 

In which we note that there is no torsion term, as the unit load in the x-y plane does 

not cause torsion in the structure. Using ZM EIκ =  and ds Rdθ= : 

 

 
2

0

1 Ay
Z

M M Rd
EI

π

δ δ⋅ = ∫ θ  (5.9) 

 

Since sinM M Rδ θ= = , and assuming the beam is prismatic, we have: 

 

 
3 2

2

0

1 sinAy
z

R d
EI

π

δ θ θ⋅ = ∫  (5.10) 

 

This is the same as the first term in equation (1.7)  and so immediately we obtain the 

solution as that of the first term of equation (1.11): 

 

 
3

1

4Ay
z

R
EI

πδ = ⋅  (5.11) 

 

In other words, the bending deflection at A in the x-y plane is the same as that in the 

z-y plane. This is apparent given that the lever arm is the same in both cases. 

However, the overall deflections are not the same due to the presence of torsion in the 

z-y plane. 

 

Now that we have the deflections in the two orthogonal planes due to the units loads, 

we can determine the deflections in these planes due to the load 1
2

: 
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3

1 2 1 1 3 8
4 42Az

Y

R
EI GJ

π πδ
⎡ ⎤−⎛= ⋅ + ⎜

⎞
⎟⎢ ⎥

⎝ ⎠⎣ ⎦
 (5.12) 

 

 
3

1 2 1
42Ay

z

R
EI

πδ
⎡ ⎤

= ⋅⎢ ⎥
⎣ ⎦

 (5.13) 

 

The deflection along the line of action of the redundant is what is of interest: 

 

 
 

Looking at the contributions of each of these deflections along the line of action of 

the redundant: 

 

 
 

From this we have: 
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1 2

3

3

1
2

1 1 1 3
4 42 2

1 1 3 8
2 4 4

Az Az

Y

Y

AE

R
EI GJ

R
EI GJ

δ δ

π π

π π

= ⋅

8⎡ ⎤−⎛= ⋅ ⋅ + ⎜
⎞
⎟⎢ ⎥

⎝ ⎠⎣ ⎦
⎡ ⎤−⎛ ⎞= ⋅ + ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦

 (5.14) 

 

 

1 2

3

3

1
2

1 1
42 2

1
2 4

Ay Ay

z

z

AD

R
EI

R
EI

δ δ

π

π

=

⎡ ⎤
= ⋅ ⋅⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⋅⎢ ⎥
⎣ ⎦

 (5.15) 

 

Thus the total deflection along the line of action of the redundant is: 

 

 

1
, 4

3 1 1 3 8 1
2 4 4 2

A Az Ay

Y z

AE AD

R
EI GJ EI

πδ δ δ
3

4
Rπ π

= +

⎡ ⎤−⎛ ⎞= ⋅ + + ⋅⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

π⎡ ⎤
⎢ ⎥
⎣ ⎦

 (5.16) 

 

This gives, finally: 

 

 
3

1
, 4

1 1 1 3 8
2 4 4A

Y z

R
EI EI GJπ

π πδ
⎡ ⎤⎛ ⎞ −⎛= + +⎢ ⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠⎣ ⎦

⎞
⎥⎟  (5.17) 

 

To complete the denominator of equation (5.1), we must include the deflection that 

the cable undergoes due to the unit tension that is the redundant: 
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1

2

Le
EA
R
EA

⋅
=

=
 (5.18) 

 

The relationship between R and L is due to the geometry of the problem – the cable is 

at an angle of 45°. 

 

Thus the denominator of equation (5.1) is finally: 

 

 
3

1
, 4 2

1 1 1 3 8 2 2
2 4 4A

Y z

R
EI EI GJ R EAπ

π πδ
⎡ ⎤⎛ ⎞ −⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦
 (5.19) 

 

The solution for the tension in the cable becomes, from equations (5.1), (5.4) and 

(5.19): 

 

 

( )2

4

3

2

21 1
2 2 8 2
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Using 
Y

GJ
EI

β = , 
Y

EA
EI

γ =  and Z

Y

EI
EI

λ = , we have: 
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 (5.21) 
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Continuing the algebra: 
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 (5.22) 

 

Which finally gives the desired result: 
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⎝ ⎠⎢ ⎥ ⎣ ⎦⎣ ⎦
 (5.23) 

 

Formal Virtual Work Approach 

In the empirical approach carried out above there were some steps that are not 

obvious. Within a formal application of virtual work we will see how the results of 

the empirical approach are obtained ‘naturally’. 

 

Following the methodology of the formal virtual work approach of Example 4, we 

can immediately jump to equation (4.10): 

 

 
0 0

0
L L

Ay
M T PLM ds T ds P
EI GJ EA

δ δ δ⎡ ⎤ ⎡ ⎤ δ⋅ = ⋅ + ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫ ∫  (5.24) 

 

For the next step we need to recognize that the unit redundant causes bending about 

both axes of bending and so the first term in equation (5.24) must become: 
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⎡ ⎤ ⎡ ⎤⎡ ⎤ ⋅ = ⋅ + ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∫ ∫ ∫ δ  (5.25) 
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In which the notation YM  and ZM  indicate the final bending moments of the actual 

structure about the Y-Y and Z-Z axes of bending respectively. Again we use 

superposition for the moments, torques and axial forces: 
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 (5.26) 

 

We do not require more torsion terms since there is only torsion in the z-y plane. With 

equations (5.25) and (5.26), equation (5.24) becomes: 
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 (5.27) 

 

Multiplying out gives: 
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 (5.28) 

 

Dr. C. Caprani 88



Structural Analysis IV 

At this point we recognize that some of the terms are zero: 

• There is no axial force in the primary structure since the cable is ‘cut’, and so 
0 0P = ; 

• There is no bending in the x-y plane (about the z-z axis of the beam) in the 

primary structure as the loading is purely vertical, thus 0 0ZM = . 

Including these points, and solving for α  gives: 
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∫ ∫ ∫ δ

 (5.29) 

 

We will next examine this expression term-by-term. 

 
0

0

L
Y

Y
Y

M M ds
EI

δ⋅∫  

For this term, 0
YM  are the moments caused by the UDL about the y-y axis of bending, 

as per  equation (2.2): 

 

 ( ) ( )0 2 1 cosYM wRθ θ= −  (5.30) 

 

YMδ  are the moments about the same axis caused by the unit redundant. Since this 

redundant acts at an angle of 45° to the plane of interest, these moments are caused 

by its vertical component of 1
2

. From equation (1.4), we thus have: 

 

 ( ) 1 sin
2YM Rδ θ = − θ  (5.31) 
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Notice that we have taken it that downwards loading causes positive bending 

moments. Thus we have: 
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 (5.32) 

 

In which we have used the relation ds Rdθ= . From the integral appendix we thus 

have: 
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 (5.33) 

 

And so finally: 

 

 
0 4

0 2 2

L
Y

Y
Y Y

M wRM ds
EI EI

δ⋅ = −∫  (5.34) 

 
0

0

L T T ds
GJ

δ⋅∫  

The torsion caused by the UDL in the primary structure is the same as that from 

equation (2.3): 

 

 ( ) ( )0 2 sinT wRθ θ θ= −  (5.35) 
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Similarly to the bending term, the torsion caused by the unit redundant is 1
2

 that of 

the unit load of  equation (2.6): 

 

 ( ) (1 1 cos
2

T R )δ θ = − − θ  (5.36) 

 

Again note that we take the downwards loads as causing positive torsion. Noting 

ds Rdθ=  we thus have: 
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⎦  (5.37) 

 

This integral is exactly that of the second term in equation (2.8). Hence we can take 

its result from equation (2.9) to give:  
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For this term we recognize that 1
Y YM Mδ=  and are the moments caused by the 1

2
 

component of the unit redundant in the vertical direction and are thus given by 

equation (1.1): 

 

 ( )1 1 sin
2Y YM M Rδ θ= = θ  (5.39) 

 

Hence this term becomes: 
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 (5.40) 

 

From the integral tables we thus have: 
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And so we finally have: 
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Again we recognize that 1
Z ZM Mδ=  and are the moments caused by the 1

2
 

component of the unit redundant in the x-y plane and are thus given by equation (5.7). 

Hence this term becomes: 
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∫ ∫ θ  (5.43) 

 

This is the same as equation (5.40) except for the different flexural rigidity, and so 

the solution is got from equation (5.42) to be: 
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Once again note that 1T Tδ=  and are the torques caused by the 1
2

 vertical 

component of the unit redundant. From equation (1.2), then we have: 

 

 (1 1 1 cos
2

T T R )δ θ= = −  (5.45) 

 

Thus: 
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This integral is that of equation (1.9) and so the solution is: 
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δ⋅  

Lastly then, since 1 1P Pδ= =  and 2L R= , this term is easily calculated to be: 
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A
 (5.48) 

 

With the values for all terms now worked out, we substitute these values into 

equation (5.29) to determine the cable tension: 
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Cancelling the negatives and re-arranging gives: 
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And this is the same as equation (5.20) and so the solution can proceed as before to 

obtain the tension in the cable as per equation (5.23).  

 

Comparison of the virtual work with the empirical form illustrates the interpretation 

of each of the terms in the virtual work equation that is inherent in the empirical view 

of such problems. 
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7.6 Review of Examples 1 – 5 

Example 1 

For a radius of 2 m and a point load of 10 kN, the bending and torsion moment 

diagrams are: 
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Using the equations derived in Example 1, the Matlab script for this is: 

 
function RingBeam_Ex1 
% Example 1 
R = 2;      % m 
P = 10;     % kN 
 
theta = 0:(pi/2)/50:pi/2; 
M = P*R*sin(theta); 
T = P*R*(1-cos(theta)); 
 
hold on; 
plot(theta.*180/pi,M,'k-'); 
plot(theta.*180/pi,T,'r--'); 
ylabel('Moment (kNm)'); 
xlabel('Degrees from Y-axis'); 
legend('Bending','Torsion','location','NW'); 
hold off; 
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Example 2 

For a radius of 2 m and a UDL of 10 kN/m, the bending and torsion moment 

diagrams are: 
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Using the equations derived in Example 2, the Matlab script for this is: 

 
function RingBeam_Ex2 
% Example 2 
R = 2;      % m 
w = 10;     % kN/m 
 
theta = 0:(pi/2)/50:pi/2; 
M = w*R^2*(1-cos(theta)); 
T = w*R^2*(theta-sin(theta)); 
 
hold on; 
plot(theta.*180/pi,M,'k-'); 
plot(theta.*180/pi,T,'r--'); 
ylabel('Moment (kNm)'); 
xlabel('Degrees from Y-axis'); 
legend('Bending','Torsion','location','NW'); 
hold off; 
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Example 3 

For the parameters given below, the bending and torsion moment diagrams are: 
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Using the equations derived in Example 3, the Matlab script for this is: 

 
function [M T alpha] = RingBeam_Ex3(beta) 
% Example 3 
R = 2;              % m 
w = 10;             % kN/m 
I = 2.7e7;          % mm4 
J = 5.4e7;          % mm4 
E = 205;            % kN/mm2 
v = 0.30;           % Poisson's Ratio 
G = E/(2*(1+v));    % Shear modulus 
EI = E*I/1e6;       % kNm2 
GJ = G*J/1e6;       % kNm2 
if nargin < 1 
    beta = GJ/EI;       % Torsion stiffness ratio 
end     
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alpha = w*R*(4*beta+(pi-2)^2)/(2*beta*pi+2*(3*pi-8)); 
 
theta = 0:(pi/2)/50:pi/2; 
M0 = w*R^2*(1-cos(theta)); 
T0 = w*R^2*(theta-sin(theta)); 
M1 = -R*sin(theta); 
T1 = -R*(1-cos(theta)); 
 
M = M0 + alpha.*M1; 
T = T0 + alpha.*T1; 
 
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,M,'k-'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('Bending','Torsion','location','NW'); 
    hold off; 
end 

 

The vertical reaction at A is found to be 11.043 kN. Note that the torsion is 

(essentially) zero at support B. Other relevant values for bending moment and torsion 

are given in the graph. 

 

By changing β , we can examine the effect of the relative stiffnesses on the vertical 

reaction at A, and consequently the bending moments and torsions. In the following 

plot, the reaction at A and the maximum and minimum bending and torsion moments 

are given for a range of β  values. 

 

Very small values of β  reflect little torsional rigidity and so the structure movements 

will be dominated by bending solely. Conversely, large values of β  reflect structures 

with small bending stiffness in comparison to torsional stiffness. At either extreme 

the variables converge to asymptotes of extreme behaviour. For 0.1 10β≤ ≤  the 

variables are sensitive to the relative stiffnesses. Of course, this reflects the normal 

range of values for β . 
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The Matlab code to produce this figure is: 

 
% Variation with Beta 
beta = logspace(-3,3); 
n = length(beta); 
for i = 1:n 
    [M T alpha] = RingBeam_Ex3(beta(i)); 
    Eff(i,1) = alpha; 
    Eff(i,2) = max(M); 
    Eff(i,3) = min(M); 
    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
 
hold on; 
plot(beta,Eff(:,1),'b:'); 
plot(beta,Eff(:,2),'k-','LineWidth',2); 
plot(beta,Eff(:,3),'k-'); 
plot(beta,Eff(:,4),'r--','LineWidth',2); 
plot(beta,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'); 
legend('Va','Max M','Min M','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Beta'); 
ylabel('Load Effect (kN & kNm)'); 
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Example 4 

For a 20 mm diameter cable, and for the other parameters given below, the bending 

and torsion moment diagrams are: 
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The values in the graph should be compared to those of Example 3, where the support 

was rigid. The Matlab script, using Example 4’s equations, for this problem is: 

 
function [M T alpha] = RingBeam_Ex4(gamma,beta) 
% Example 4 
R = 2;              % m - radius of beam 
L = 2;              % m - length of cable 
w = 10;             % kN/m - UDL 
A = 314;            % mm2 - area of cable 
I = 2.7e7;          % mm4 
J = 5.4e7;          % mm4 
E = 205;            % kN/mm2 
v = 0.30;           % Poisson's Ratio 
G = E/(2*(1+v));    % Shear modulus 
EA = E*A;           % kN - axial stiffness 
EI = E*I/1e6;       % kNm2 
GJ = G*J/1e6;       % kNm2 
if nargin < 2 
    beta = GJ/EI;       % Torsion stiffness ratio 
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end 
if nargin < 1 
    gamma = EA/EI;      % Axial stiffness ratio 
end 
 
alpha = w*R*(4*beta+(pi-2)^2)/(2*beta*pi+2*(3*pi-
8)+8*(beta/gamma)*(L/R^3)); 
 
theta = 0:(pi/2)/50:pi/2; 
M0 = w*R^2*(1-cos(theta)); 
T0 = w*R^2*(theta-sin(theta)); 
M1 = -R*sin(theta); 
T1 = -R*(1-cos(theta)); 
 
M = M0 + alpha.*M1; 
T = T0 + alpha.*T1; 
 
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,M,'k-'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('Bending','Torsion','location','NW'); 
    hold off; 
end 

 

Whist keeping the β  constant, we can examine the effect of varying the cable 

stiffness on the behaviour of the structure, by varying γ . Again we plot the reaction 

at A and the maximum and minimum bending and torsion moments for the range of 

γ  values. 

 

For small γ , the cable has little stiffness and so the primary behaviour will be that of 

Example 1, where the beam was a pure cantilever. Conversely for high γ , the cable 

is very stiff and so the beam behaves as in Example 3, where there was a pinned 

support at A. Compare the maximum (hogging) bending moments for these two cases 

with the graph. Lastly, for 0.01 3γ≤ ≤ , the cable and beam interact and the variables 

are sensitive to the exact ratio of stiffness. Typical values in practice are towards the 

lower end of this region. 

Dr. C. Caprani 102



Structural Analysis IV 

 

10-3 10-2 10-1 100 101 102 103
-10

0

10

20

30

40

Gamma

Lo
ad

 E
ffe

ct
 (k

N
 &

 k
N

m
)

T Max M Min M Max T Min T

 
 

The Matlab code for this plot is: 

 
% Variation with Gamma 
gamma = logspace(-3,3); 
n = length(gamma); 
for i = 1:n 
    [M T alpha] = RingBeam_Ex4(gamma(i)); 
    Eff(i,1) = alpha; 
    Eff(i,2) = max(M); 
    Eff(i,3) = min(M); 
    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
 
hold on; 
plot(gamma,Eff(:,1),'b:'); 
plot(gamma,Eff(:,2),'k-','LineWidth',2); 
plot(gamma,Eff(:,3),'k-'); 
plot(gamma,Eff(:,4),'r--','LineWidth',2); 
plot(gamma,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'); 
legend('T','Max M','Min M','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Gamma'); 
ylabel('Load Effect (kN & kNm)'); 
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Example 5 

Again we consider a 20 mm diameter cable, and a doubly symmetric section, that is 

Y ZEI EI= . For the parameters below the bending and torsion moment diagrams are: 
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The values in the graph should be compared to those of Example 4, where the cable 

was vertical. The Matlab script, using Example 5’s equations, for this problem is: 

 
function [My T alpha] = RingBeam_Ex5(lamda,gamma,beta) 
% Example 5 
R = 2;              % m - radius of beam 
w = 10;             % kN/m - UDL 
A = 314;            % mm2 - area of cable 
Iy = 2.7e7;         % mm4 
Iz = 2.7e7;         % mm4 
J = 5.4e7;          % mm4 
E = 205;            % kN/mm2 
v = 0.30;           % Poisson's Ratio 
G = E/(2*(1+v));    % Shear modulus 
EA = E*A;           % kN - axial stiffness 
EIy = E*Iy/1e6;     % kNm2 
EIz = E*Iz/1e6;     % kNm2 
GJ = G*J/1e6;       % kNm2 
if nargin < 3 
    beta = GJ/EIy;      % Torsion stiffness ratio 
end 
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if nargin < 2 
    gamma = EA/EIy;     % Axial stiffness ratio 
end 
if nargin < 1 
    lamda = EIy/EIz;    % Bending stiffness ratio 
end 
 
numerator = (4*beta+(pi-2)^2)/(beta*sqrt(2)); 
denominator = (pi*(1+1/lamda)+(3*pi-
8)/beta+8*sqrt(2)/(gamma*R^2)); 
alpha = w*R*numerator/denominator; 
 
theta = 0:(pi/2)/50:pi/2; 
M0y = w*R^2*(1-cos(theta)); 
M0z = 0; 
T0 = w*R^2*(theta-sin(theta)); 
M1y = -R*sin(theta); 
M1z = -R*sin(theta); 
T1 = -R*(1-cos(theta)); 
 
My = M0y + alpha.*M1y; 
Mz = M0z + alpha.*M1z; 
T = T0 + alpha.*T1; 
 
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,My,'k'); 
    plot(theta.*180/pi,Mz,'k:'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('YY Bending','ZZ Bending','Torsion','location','NW'); 
    hold off; 
end 

 

Keep all parameters constant, but varying the ratio of the bending rigidities by 

changing λ , the output variables are as shown below. For low λ  (a tall slender beam) 

the beam behaves as a cantilever. Thus the cable requires some transverse bending 

stiffness to be mobilized. With high λ  (a wide flat beam) the beam behaves as if 

supported at A with a vertical roller. Only vertical movement takes place, and the 

effect of the cable is solely its vertical stiffness at A. Usually 0.1 2λ≤ ≤  which means 

that the output variables are usually quite sensitive to the input parameters. 
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The Matlab code to produce this graph is: 

 
% Variation with Lamda 
lamda = logspace(-3,3); 
n = length(lamda); 
for i = 1:n 
    [My T alpha] = RingBeam_Ex5(lamda(i)); 
    Eff(i,1) = alpha; 
    Eff(i,2) = max(My); 
    Eff(i,3) = min(My); 
    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
 
hold on; 
plot(lamda,Eff(:,1),'b:'); 
plot(lamda,Eff(:,2),'k-','LineWidth',2); 
plot(lamda,Eff(:,3),'k-'); 
plot(lamda,Eff(:,4),'r--','LineWidth',2); 
plot(lamda,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'); 
legend('T','Max My','Min My','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Lamda'); 
ylabel('Load Effect (kN & kNm)'); 
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