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3.1 Introduction 

3.1.1 General 

To further illustrate the virtual work method applied to more complex structures, the 

following sets of examples are given. The examples build upon each other to 

illustrate how the analysis of a complex structure can be broken down. 
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3.2 Ring Beam Examples 

3.2.1 Example 1 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the deflection at A due to the point load, P, at A is: 

 

 
3 3 3 8

4 4Ay

PR PR
EI GJ

π πδ − = ⋅ +  
 
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Solution 

The point load will cause both bending and torsion in the beam member. Therefore 

both effects must be accounted for in the deflection calculations. Shear effects are 

ignored. 

 

Drawing a plan view of the structure, we can identify the perpendicular distance of 

the force, P, from the section of consideration, which we locate by the angle θ  from 

the y-axis: 

 

 
 

The bending moment at C is P times the perpendicular distance AC , called m. The 

torsion at C is the force times the transverse perpendicular distance CD , called t. 

Using the triangle ODA, we have: 
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sin sin

cos cos

m m R
R
OD

OD R
R

θ θ

θ θ

= ∴ =

= ∴ =
 

 

The distance CD , or t, is R OD− , thus: 

 

 

( )
cos

1 cos

t R OD
R R
R

θ
θ

= −

= −

= −

 

 

Thus the bending moment at point C is: 

 

 ( )
sin

M Pm
PR

θ
θ

=

=
 (1) 

 

The torsion at C is: 

 

 
( )

( )1 cos

T Pt

PR

θ

θ

=

= −
 (2) 

 

Using virtual work, we have: 

 

 
0

E I

Ay

W
W W

M TF M ds T ds
EI GJ

δ
δ δ

δ δ δ δ

=
=

⋅ = ⋅ + ⋅∫ ∫

 (3) 
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This equation represents the virtual work done by the application of a virtual force, 

Fδ , in the vertical direction at A, with its internal equilibrium virtual moments and 

torques, Mδ  and Tδ  and so is the equilibrium system. The compatible 

displacements system is that of the actual deformations of the structure, externally at 

A, and internally by the curvatures and twists, M EI  and T GJ . 

 

Taking the virtual force, 1Fδ = , and since it is applied at the same location and 

direction as the actual force P, we have, from equations (1) and (2): 

 

 ( ) sinM Rδ θ θ=  (4) 

 

 ( ) ( )1 cosT Rδ θ θ= −  (5) 

 

Thus, the virtual work equation, (3), becomes: 

 

 
[ ][ ] ( ) ( )

2 2

0 0

1 11

1 1sin sin 1 cos 1 cos

Ay M M ds T T ds
EI GJ

PR R Rd PR R Rd
EI GJ

π π

δ δ δ

θ θ θ θ θ θ

⋅ = ⋅ + ⋅

= + − −      

∫ ∫

∫ ∫
 (6) 

 

In which we have related the curve distance, ds , to the arc distance, ds Rdθ= , which 

allows us to integrate round the angle rather than along the curve. Multiplying out: 

 

 ( )
2 23 3

22

0 0

sin 1 cosAy
PR PRd d
EI GJ

π π

δ θ θ θ θ= + −∫ ∫  (7) 

  

Considering the first term, from the integrals’ appendix, we have: 
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 ( )

22
2

00

1sin sin 2
2 4

1 0 0 0
4 4

4

d
ππ θθ θ θ

π

π

 = −  

  = − ⋅ − −    

=

∫

 (8) 

 

The second term is: 

 

 
( ) ( )

2 2
2 2

0 0

2 2 2
2

0 0 0

1 cos 1 2cos cos

1 2 cos cos

d d

d d d

π π

π π π

θ θ θ θ θ

θ θ θ θ θ

− = − +

= − +

∫ ∫

∫ ∫ ∫
 (9) 

 

Thus, from the integrals in the appendix: 

 

 

( ) [ ] [ ]

( ) ( ) ( ) ( )

22
2 22

0 0
00

11 cos 2 sin sin 2
2 4

10 2 1 0 0 0 0
2 4 4

2
2 4
3 8

4

d
ππ

π π θθ θ θ θ θ

π π

π π

π

 − = − + +  

      = − − − + + ⋅ − +              

= − +

−
=

∫

 (10) 

 

Substituting these results back into equation (7) gives the desired result: 

 

 
3 3 3 8

4 4Ay
PR PR
EI GJ

π πδ − = +  
 

 (11) 
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3.2.2 Example 2 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the deflection at A due to the uniformly distributed 

load, w, shown is: 

 

 ( )24 4 21
2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅   

 

 
 

 

 



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 9 

Solution 

The UDL will cause both bending and torsion in the beam member and both effects 

must be accounted for. Again, shear effects are ignored. 

 

 
 

Drawing a plan view of the structure, we must identify the moment and torsion at 

some point C, as defined by the angle θ  from the y-axis, caused by the elemental 

load at E, located at φ  from the y-axis. The load is given by: 

 

 
Force UDL length

w ds
w R dφ

= ×
= ⋅
= ⋅

 (12) 
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The bending moment at C is the load at E times the perpendicular distance DE , 

labelled m. The torsion at C is the force times the transverse perpendicular distance 

CD , labelled t. Using the triangle ODE, we have: 

 

 
( ) ( )

( ) ( )

sin sin

cos cos

m m R
R
OD

OD R
R

θ φ θ φ

θ φ θ φ

− = ∴ = −

− = ∴ = −
 

 

The distance t is thus: 

 

 ( )
( )

cos

1 cos

t R OD

R R

R

θ φ

θ φ

= −

= − −

= − −  

 

 

The differential bending moment at point C, caused by the elemental load at E is 

thus: 

 

 

( )
[ ]
[ ] ( )

( )2

Force Distance

sin

sin

dM

wRd m

wRd R

wR d

θ

φ

φ θ φ

θ φ φ

= ×

= ×

= −  
= −

  

 

Integrating to find the total moment at C caused by the UDL from A to C around the 

angle 0 to θ  gives: 
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( ) ( )

( )

( )

2

0

2

0

sin

sin

M dM

wR d

wR d

φ θ

φ

φ θ

φ

θ θ

θ φ φ

θ φ φ

=

=

=

=

=

= −

= −

∫

∫

∫

  

 

In this integral θ  is a constant and only φ  is considered a variable. Using the identity 

from the integral table gives: 

 

 
( ) ( )

( )

2

0

2

cos

cos0 cos

M wR

wR

φ θ

φ
θ θ φ

θ

=

=
= −  

= −  
  

 

And so: 

 

 ( ) ( )2 1 cosM wRθ θ= −  (13) 

 

Along similar lines, the torsion at C caused by the load at E is: 

 

 

( ) [ ]
[ ] ( ){ }

( )2

1 cos

1 cos

dT wRd t

wRd R

wR d

θ φ

φ θ φ

θ φ φ

= ×

= − −  

= − −  

  

 

And integrating for the total torsion at C: 
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( ) ( )

( )

( )

( )

2

0

2

0

2

0 0

1 cos

1 cos

1 cos

T dT

wR d

wR d

wR d d

φ θ

φ

φ θ

φ

φ θ φ θ

φ φ

θ θ

θ φ φ

θ φ φ

φ θ φ φ

=

=

=

=

= =

= =

=

= − −  

= − −  

 
= − − 

 

∫

∫

∫

∫ ∫

 

 

Using the integral identity for ( )cos θ φ−  gives: 

 

 
( ) [ ] ( ){ }

[ ]{ }

2

0 0

2

sin

sin 0 sin

T wR

wR

φ θφ θ

φ φ
θ φ θ φ

θ θ

==

= =
= − − −  

= + −
 

 

And so the total torsion at C is: 

 

 ( ) ( )2 sinT wRθ θ θ= −  (14) 

 

To determine the deflection at A, we apply a virtual force, Fδ , in the vertical 

direction at A. Along with its internal equilibrium virtual moments and torques, Mδ  

and Tδ  and this set forms the equilibrium system. The compatible displacements 

system is that of the actual deformations of the structure, externally at A, and 

internally by the curvatures and twists, M EI  and T GJ . Therefore, using virtual 

work, we have: 

 

 
0

E I

Ay

W
W W

M TF M ds T ds
EI GJ

δ
δ δ

δ δ δ δ

=
=

⋅ = ⋅ + ⋅∫ ∫

 (15) 
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Taking the virtual force, 1Fδ = , and using the equation for moment and torque at 

any angle θ  from Example 1, we have: 

 

 ( ) sinM Rδ θ θ=  (16) 

 

 ( ) ( )1 cosT Rδ θ θ= −  (17) 

 

Thus, the virtual work equation, (15), using equations (13) and (14), becomes: 

 

 ( ) [ ]

( ) ( )

2
2

0

2
2

0

1 11

1 1 cos sin

1 sin 1 cos

Ay M M ds T T ds
EI GJ

wR R Rd
EI

wR R Rd
GJ

π

π

δ δ δ

θ θ θ

θ θ θ θ

⋅ = ⋅ + ⋅

 = − 

 + − −   

∫ ∫

∫

∫

 (18) 

 

In which we have related the curve distance, ds , to the arc distance, ds Rdθ=  

allowing us to integrate round the angle rather than along the curve. Multiplying out: 

 

 
( )

( )

24

0

24

0

sin sin cos

sin cos cos sin

Ay
wR d
EI

wR d
GJ

π

π

δ θ θ θ θ

θ θ θ θ θ θ θ

= −

+ − − +

∫

∫
 (19) 

 

Using the respective integrals from the appendix yields: 
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( )

( ) ( )

24

0

24 2

0

4

4 2

4

4 2

1cos cos2
4

1cos sin cos cos2
2 4

1 10 1
4 4

1 10 1 0 1 0 1 0 1
8 2 4 4

1
2

1 1
8 2 4 4

Ay
wR
EI

wR
GJ

wR
EI

wR
GJ

wR
EI

wR
GJ

π

π

δ θ θ

θ θ θ θ θ θ

π π

π π

 = − +  

 
+ + − + − 

 

    = − − − − +        
     + + − ⋅ + − − − + − + −     

     

 =   


+ − + +



 

   
 

Writing the second term as a common fraction: 

 

 
4 4 21 4 4

2 8Ay
wR wR
EI GJ

π πδ
 − +

= ⋅ +  
 

  

 

And then factorising, gives the required deflection at A: 

 

 
( )224 4 21

2 8Ay
wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (20) 
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3.2.3 Example 3 

Problem 

For the quarter-circle beam shown, which has flexural and torsional rigidities of EI 

and GJ respectively, show that the vertical reaction at A due to the uniformly 

distributed load, w, shown is: 

 

 ( )
( )

24 2
2 2 3 8AV wR

β π
βπ π

 + −
=  

+ −  
  

 

where GJ
EI

β = . 
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Solution 

This problem can be solved using two apparently different methods, but which are 

equivalent. Indeed, examining how they are equivalent leads to insights that make 

more difficult problems easier, as we shall see in subsequent problems. For both 

approaches we will make use of the results obtained thus far: 

• Deflection at A due to UDL: 

 

 ( )24 4 21
2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (21) 

 

• Deflection at A due to point load at A: 

 

 
3 3 3 8

4 4Ay

PR PR
EI GJ

π πδ − = ⋅ +  
 

 (22) 

 

Using Compatibility of Displacement 

The basic approach, which does not require virtual work, is to use compatibility of 

displacement in conjunction with superposition. If we imagine the support at A 

removed, we will have a downwards deflection at A caused by the UDL, which 

equation (21) gives us as: 

 

 ( )24 4
0 21

2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (23) 

 

As illustrated in the following diagram. 
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Since in the original structure we will have a support at A we know there is actually 

no displacement at A. The vertical reaction associated with the support at A, called V, 

must therefore be such that it causes an exactly equal and opposite deflection, V
Ayδ , to 

that of the UDL, 0
Ayδ , so that we are left with no deflection at A: 

 

 0 0V
Ay Ayδ δ+ =  (24) 

 

Of course we don’t yet know the value of V, but from equation (22), we know the 

deflection caused by a unit load placed in lieu of V: 

 

 
3 3

1 1 1 3 8
4 4Ay

R R
EI GJ

π πδ ⋅ ⋅ − = ⋅ +  
 

 (25) 
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This is shown in the following diagram: 

 

 

 

 

Using superposition, we know that the deflection caused by the reaction, V, is V times 

the deflection caused by a unit load: 

 

 1V
Ay AyVδ δ= ⋅  (26) 

 

Thus equation (24) becomes: 

 

 0 1 0Ay AyVδ δ+ ⋅ =  (27) 

 

Which we can solve for V: 
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0

1
Ay

Ay

V
δ
δ

= −  (28) 

 

If we take downwards deflections to be positive, we then have, from equations(23),  

(25), and (28): 

 

 

( )24 4

3 3

21
2 8

1 1 3 8
4 4

wR wR
EI GJ

V
R R

EI GJ

π

π π

 −
⋅ + ⋅  

 = −
 ⋅ ⋅ −  − ⋅ +     

 (29) 

 

The two negative signs cancel, leaving us with a positive value for V indicating that it 

is in the same direction as the unit load, and so is upwards as expected. Introducing 

GJ
EI

β =  and doing some algebra on equation (29) gives: 

 

 

( )

( )

( ) ( )

( )
( )

12

12

12

2

21 1 1 1 1 3 8
2 8 4 4

21 1 1 3 8
2 8 4 4

4 2 3 8
8 4

4 2 8
8 2 2 3 8

V wR
EI EI EI EI

wR

wR

wR

π π π
β β

π π π
β β

β π βπ π
β β

β π β
β βπ π

−

−

−

 −  − = ⋅ + ⋅ × ⋅ +         
 −  − = + ⋅ × +         
 + − + − 

= ×       
   + −

= ×     + −  

 

 

And so we finally have the required reaction at A as: 
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 ( )
( )

24 2
2 2 3 8AV wR

β π
βπ π

 + −
=   + − 

 (30) 

 

Using Virtual Work 

To calculate the reaction at A using virtual work, we use the following: 

• Equilibrium system: the external and internal virtual forces corresponding to a 

unit virtual force applied in lieu of the required reaction; 

• Compatible system: the real external and internal displacements of the original 

structure subject to the real applied loads. 

Thus the virtual work equations are: 

 

 
0

E I

Ay

W
W W

F M ds T ds

δ
δ δ

δ δ κ δ φ δ

=
=

⋅ = ⋅ + ⋅∫ ∫
 (31) 

 

At this point we introduce some points: 

• The real external deflection at A is zero: 0Ayδ = ; 

• The virtual force, 1Fδ = ; 

• The real curvatures can be expressed using the real bending moments, M
EI

κ = ; 

• The real twists are expressed from the torque, T
GJ

φ = . 

These combine to give, from equation (31): 

 

 
0 0

0 1
L LM TM ds T ds

EI GJ
δ δ   ⋅ = ⋅ + ⋅      ∫ ∫  (32) 
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Next, we use superposition to express the real internal ‘forces’ as those due to the real 

loading applied to the primary structure plus a multiplier times those due to the unit 

virtual load applied in lieu of the reaction: 

 

 0 1 0 1M M M T T Tα α= + = +  (33) 

 

Notice that 1M Mδ =  and 1T Tδ = , but they are still written with separate notation to 

keep the ideas clear. Thus equation (32) becomes: 

 

 

( ) ( )0 1 0 1

0 0

0 1 0 1

0 0 0 0

0

0

L L

L L L L

M M T T
M ds T ds

EI GJ

M M T TM ds M ds T ds T ds
EI EI GJ GJ

α α
δ δ

δ α δ δ α δ

   + +
= ⋅ + ⋅   

      

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅

∫ ∫

∫ ∫ ∫ ∫

 (34) 

 

And so finally: 

 

 

0 0

0 0
1 1

0 0

L L

L L

M TM ds T ds
EI GJ

M TM ds T ds
EI GJ

δ δ
α

δ δ

 
⋅ + ⋅ 

 = −
 

⋅ + ⋅ 
 

∫ ∫

∫ ∫
 (35) 

 

At this point we must note the similarity between equations (35) and (28). From 

equation (3), it is clear that the numerator in equation (35) is the deflection at A of the 

primary structure subject to the real loads. Further, from equation (15), the 

denominator in equation (35) is the deflection at A due to a unit (virtual) load at A. 

 

Neglecting signs, and generalizing somewhat, we can arrive at an ‘empirical’ 

equation for the calculation of redundants: 

 



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 22 

 
of primary structure along due to actual loads   
line of action of redundant due to unit redundant

δα
δ


= 


 (36) 

 

Using this form we will quickly be able to determine the solutions to further ring-

beam problems. 

 

The solution for α  follows directly from the previous examples: 

• The numerator is determined as per Example 1; 

• The denominator is determined as per Example 2, with 1P = . 

Of course, these two steps give the results of equations (23) and (25) which were 

used in equation (28) to obtain equation (29), and leading to the solution, equation 

(30). 

 

From this it can be seen that compatibility of displacement and virtual work are 

equivalent ways of looking at the problem. Also it is apparent that the virtual work 

framework inherently calculates the displacements required in a compatibility 

analysis. Lastly, equation (36) provides a means for quickly calculating the redundant 

for other arrangements of the structure from the existing solutions, as will be seen in 

the next example. 
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3.2.4 Example 4 

Problem 

For the structure shown, the quarter-circle beam has flexural and torsional rigidities 

of EI and GJ respectively and the cable has axial rigidity EA, show that the tension in 

the cable due to the uniformly distributed load, w, shown is: 

 

 ( ) ( )
1

2

34 2 2 2 3 8 8 LT wR
R

ββ π πβ π
γ

−
  = + − + − + ⋅    

 

 

where GJ
EI

β =  and EA
EI

γ = . 
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Solution 

For this solution, we will use the insights gained from Example 3, in particular 

equation (36). We will then verify this approach using the usual application of virtual 

work. We will be choosing the cable as the redundant throughout. 

 

Empirical Form 

Repeating our ‘empirical’ equation here: 

 

 
of primary structure along due to actual loads   
line of action of redundant due to unit redundant

δα
δ


= 


 (37) 

 

We see that we already know the numerator: the deflection at A in the primary 

structure, along the line of the redundant (vertical, since the cable is vertical), due to 

the actual loads on the structure is just the deflection of Example 1: 

 

 ( )24 4
0 21

2 8Ay

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (38) 

 

This is shown below: 

 

 



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 26 

 

Next we need to identify the deflection of the primary structure due to a unit 

redundant, as shown below: 

 

 
 

The components that make up this deflection are: 

• Deflection of curved beam caused by unit load (bending and torsion); 

• Deflection of the cable AC caused by the unit tension. 

The first of these is simply the unit deflection of Example 3, equation (25): 

 

 ( )
3 3

1 1 1 3 8beam
4 4Ay

R R
EI GJ

π πδ ⋅ ⋅ − = ⋅ +  
 

 (39) 

 

The second of these is not intuitive, but does feature in the virtual work equations, as 

we shall see. The elongation of the cable due to a unit tension is: 
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 ( )1 1cableAy

L
EA

δ ⋅
=  (40) 

 

Thus the total deflection along the line of the redundant, of the primary structure, due 

to a unit redundant is: 

 

 
( ) ( )1 1 1

3 3

beam cable

1 1 3 8 1
4 4

Ay Ay Ay

R R L
EI GJ EA

δ δ δ

π π

= +

⋅ ⋅ − ⋅ = ⋅ + + 
 

 (41) 

 

Both sets of deflections (equations (39) and (41)) are figuratively summarized as: 

 

 
 

And by making 0 1
Ay AyTδ δ= , where T is the tension in the cable, we obtain our 

compatibility equation for the redundant. Thus, from equations (37), (38) and (41) we 

have: 
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( )24 4

3 3

21
2 8

1 1 3 8 1
4 4

wR wR
EI GJ

T
R R L

EI GJ EA

π

π π

 −
⋅ + ⋅ 

  =
 ⋅ ⋅ − ⋅  ⋅ + +    

 (42) 

 

Setting GJ
EI

β =  and EA
EI

γ = , and performing some algebra gives: 

 

 

( )

( ) ( )

( ) ( )

12

3

12

3

1

2 3

21 1 1 1 1 3 8
2 8 4 4

4 2 3 8
8 4

82 2 3 84 2
8 8

LT wR
EI EI EI EI R EI

LwR
R

L
RwR

π π π
β β γ

β π βπ π
β β γ

ββπ πβ π γ
β β

−

−

−

 −  − = ⋅ + ⋅ ⋅ + +        
 + − + − 

= +   
    

 + − + + −  =    
     

 (43) 

 

Which finally gives the required tension as: 

 

 ( ) ( )
1

2

34 2 2 2 3 8 8 LT wR
R

ββ π πβ π
γ

−
  = + − + − + ⋅    

 (44) 

 

Comparing this result to the previous result, equation (30), for a pinned support at A, 

we can see that the only difference is the term related to the cable: 38 L
R

β
γ
⋅ . Thus the 

‘reaction’ (or tension in the cable) at A depends on the relative stiffnesses of the beam 

and cable (through the 
3R

EI
,  

3R
GJ

 and L
EA

 terms inherent through γ  and β ).  This 

dependence on relative stiffness is to be expected. 
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Formal Virtual Work Approach 

Without the use of the insight that equation (37) gives, the more formal application of 

virtual work will, of course, yield the same result. To calculate the tension in the 

cable using virtual work, we use the following: 

• Equilibrium system: the external and internal virtual forces corresponding to a 

unit virtual force applied in lieu of the redundant; 

• Compatible system: the real external and internal displacements of the original 

structure subject to the real applied loads. 

Thus the virtual work equations are: 

 

 
0

E I

Ay

W
W W

F M ds T ds e P

δ
δ δ

δ δ κ δ φ δ δ

=
=

⋅ = ⋅ + ⋅ + ⋅∑∫ ∫
 (45) 

 

In this equation we have accounted for all the major sources of displacement (and 

thus virtual work). At this point we acknowledge: 

• There is no external virtual force applied, only an internal tension, thus 0Fδ = ; 

• The real curvatures and twists are expressed using the real bending moments and 

torques as M
EI

κ =  and T
GJ

φ =  respectively; 

• The elongation of the cable is the only source of axial displacement and is 

written in terms of the real tension in the cable, P, as PLe
EA

= . 

These combine to give, from equation (45): 

 

 
0 0

0
L L

Ay
M T PLM ds T ds P
EI GJ EA

δ δ δ δ   ⋅ = ⋅ + ⋅ + ⋅      ∫ ∫  (46) 

 

As was done in Example 3, using superposition, we write: 
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 0 1 0 1 0 1M M M T T T P P Pα α α= + = + = +  (47) 

 

However, we know that there is no tension in the cable in the primary structure, since 

it is the cable that is the redundant and is thus removed, hence 0 0P = . Using this and 

equation (47) in equation (46) gives: 

 

 ( ) ( ) ( )0 1 0 1 1

0 0

0
L LM M T T P L

M ds T ds P
EI GJ EA
α α α

δ δ δ
   + +

= ⋅ + ⋅ + ⋅   
      
∫ ∫  (48) 

 

Hence: 

 

 

0 1

0 0

0 1

0 0

1

0
L L

L L

M MM ds M ds
EI EI

T TT ds T ds
GJ GJ

P L P
EA

δ α δ

δ α δ

α δ

= ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅

+ ⋅ ⋅

∫ ∫

∫ ∫  (49) 

 

And so finally: 

 

 

0 0

0 0
1 1 1

0 0

L L

L L

M TM ds T ds
EI GJ

M T P LM ds T ds P
EI GJ EA

δ δ
α

δ δ δ

 
⋅ + ⋅ 

 = −
 

⋅ + ⋅ + ⋅ 
 

∫ ∫

∫ ∫
 (50) 

 

Equation (50) matches equation (35) except for the term relating to the cable. Thus 

the other four terms are evaluated exactly as per Example 3. The cable term, 
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1P L P
EA

δ⋅ , is easily found once it is recognized that 1 1P Pδ= =  as was the case for 

the moment and torsion in Example 3. With all the terms thus evaluated, equation 

(50) becomes the same as equation (42) and the solution progresses as before. 

 

The virtual work approach yields the same solution, but without the added insight of 

the source of each of the terms in equation (50) represented by equation (37). 
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3.2.5 Example 5 

Problem 

For the structure shown, the quarter-circle beam has the properties: 

• torsional rigidity of GJ; 

• flexural rigidity about the local y-y axis YEI ; 

• flexural rigidity about the local z-z axis ZEI . 

The cable has axial rigidity EA. Show that the tension in the cable due to the 

uniformly distributed load, w, shown is: 

 

 ( ) ( )
12

2

4 2 1 1 8 21 3 8
2

T wR
R

β π
π π

λ β γβ

−   + −  = + + − +    
     

 

 

where 
Y

GJ
EI

β = , 
Y

EA
EI

γ =  and Z

Y

EI
EI

λ = . 
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Solution 

We will carry out this solution using both the empirical and virtual work approaches 

as was done for Example 4. However, it is in this example that the empirical 

approach will lead to savings in effort over the virtual work approach, as will be seen. 

 

Empirical Form 

Repeating our empirical equation: 

 

 
of primary structure along due to actual loads   
line of action of redundant due to unit redundant

δα
δ


= 


 (51) 

 

We first examine the numerator with the following y-z axis elevation of the primary 

structure loaded with the actual loads: 

 

 
 

Noting that it is the deflection along the line of the redundant that is of interest, we 

can draw the following: 
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The deflection Azδ , which is the distance 'AA  is known from Example 2 to be: 

 

 ( )24 4 21
2 8Az

wR wR
EI GJ

π
δ

−
= ⋅ + ⋅  (52) 

 

It is the deflection ''AA  that is of interest here. Since the triangle A-A’-A’’ is a 1-1-

2  triangle, we have: 

 

 , 4 2
Az

A π

δδ =  (53) 

 

And so the numerator is thus: 

 

 ( )24 4
0 2

2 2 8 2A

wR wR
GJEI

π
δ

−
= + ⋅  (54) 
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To determine the denominator of equation (51) we must apply a unit load in lieu of 

the redundant (the cable) and determine the deflection in the direction of the cable.  

 

Firstly we will consider the beam. We can determine the deflection in the z- and y-

axes separately and combine, by examining the deflections that the components of the 

unit load cause: 

 

 
 

To find the deflection that a force of 1
2

 causes in the z- and y-axes directions, we 

will instead find the deflections that unit loads cause in these directions, and then 

divide by 2 .  

 

Since we are now calculating deflections in two orthogonal planes of bending, we 

must consider the different flexural rigidities the beam will have in these two 
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directions: YEI  for the horizontal plane of bending (vertical loads), and ZEI  for loads 

in the x-y plane, as shown in the figure: 

 

 
 

First, consider the deflection at A in the z-direction, caused by a unit load in the z-

direction, as shown in the following diagram. This is the same as the deflection 

calculated in Example 1 and used in later examples: 

 

 
3 3

1 1 1 3 8
4 4Az

Y

R R
EI GJ

π πδ ⋅ ⋅ − = ⋅ +  
 

 (55) 

 

 



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 38 

 
 

Considering the deflection at A in the y-direction next, we see from the following 

diagram that we do not have this result to hand, and so must calculate it: 
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Looking at the elevation of the x-y plane, we have: 

 

 
 

The lever arm, m, is: 

 

 sinm R θ=  (56) 

 

Thus the moment at point C is: 

 

 ( ) 1 1 sinM m Rθ θ= ⋅ = ⋅  (57) 

 

Using virtual work: 
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0

1
E I

Ay

W
W W

M ds

δ
δ δ

δ κ δ

=
=

⋅ = ⋅∫
 (58) 

 

In which we note that there is no torsion term, as the unit load in the x-y plane does 

not cause torsion in the structure. Using ZM EIκ =  and ds Rdθ= : 

 

 
2

0

1 Ay
Z

M M Rd
EI

π

δ δ θ⋅ = ∫  (59) 

 

Since sinM M Rδ θ= = , and assuming the beam is prismatic, we have: 

 

 
3 2

2

0

1 sinAy
z

R d
EI

π

δ θ θ⋅ = ∫  (60) 

 

This is the same as the first term in equation (7)  and so immediately we obtain the 

solution as that of the first term of equation (11): 

 

 
3

1

4Ay
z

R
EI

πδ = ⋅  (61) 

 

In other words, the bending deflection at A in the x-y plane is the same as that in the 

z-y plane. This is apparent given that the lever arm is the same in both cases. 

However, the overall deflections are not the same due to the presence of torsion in the 

z-y plane. 

 

Now that we have the deflections in the two orthogonal planes due to the units loads, 

we can determine the deflections in these planes due to the load 1
2

: 
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3

1 2 1 1 3 8
4 42Az

Y

R
EI GJ

π πδ
 − = ⋅ +   

  
 (62) 

 

 
3

1 2 1
42Ay

z

R
EI

πδ
 

= ⋅ 
 

 (63) 

 

The deflection along the line of action of the redundant is what is of interest: 

 

 
 

Looking at the contributions of each of these deflections along the line of action of 

the redundant: 

 

 
 

From this we have: 
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1 2

3

3

1
2

1 1 1 3 8
4 42 2

1 1 3 8
2 4 4

Az Az

Y

Y

AE

R
EI GJ

R
EI GJ

δ δ

π π

π π

= ⋅

 − = ⋅ ⋅ +   
  

 − = ⋅ +   
  

 (64) 

 

 

1 2

3

3

1
2

1 1
42 2

1
2 4

Ay Ay

z

z

AD

R
EI

R
EI

δ δ

π

π

=

 
= ⋅ ⋅ 

 
 

= ⋅ 
 

 (65) 

 

Thus the total deflection along the line of action of the redundant is: 

 

 

1
, 4

3 31 1 3 8 1
2 4 4 2 4

A Az Ay

Y z

AE AD

R R
EI GJ EI

πδ δ δ

π π π

= +

   − = ⋅ + + ⋅    
    

 (66) 

 

This gives, finally: 

 

 
3

1
, 4

1 1 1 3 8
2 4 4A

Y z

R
EI EI GJπ

π πδ
   − = + +    

   
 (67) 

 

To complete the denominator of equation (51), we must include the deflection that 

the cable undergoes due to the unit tension that is the redundant: 
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1

2

Le
EA
R
EA

⋅
=

=
 (68) 

 

The relationship between R and L is due to the geometry of the problem – the cable is 

at an angle of 45°. 

 

Thus the denominator of equation (51) is finally: 

 

 
3

1
, 4 2

1 1 1 3 8 2 2
2 4 4A

Y z

R
EI EI GJ R EAπ

π πδ
   − = + + +    

   
 (69) 

 

The solution for the tension in the cable becomes, from equations (51), (54) and (69): 

 

 

( )2

4

3

2

21 1
2 2 8 2

1 1 1 3 8 2 2
2 4 4Y z

wR
GJEI

T
R

EI EI GJ R EA

π

π π

 −
+ ⋅ 

  =
   − + + +   

   

 (70) 

 

Using 
Y

GJ
EI

β = , 
Y

EA
EI

γ =  and Z

Y

EI
EI

λ = , we have: 

 

 

( )2

1

2

21 1
2 2 8 2

1 1 1 3 8 2
8 8

YY

Y Y Y Y

T wR
EIEI

EI EI EI R EI

π
β

π π
λ β γ

−

 −
= + ⋅ 

  

   − × + + +    
   

 (71) 

 

Continuing the algebra: 
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( )

( ) ( )

12

2

12

2

21 1 1 1 3 8 21
8 82 2 8 2

4 2 1 1 8 21 3 8
8 8 88 2

T wR
R

wR
R

π π π
β λ β γ

β π π π
λ β γβ

−

−

   − −   = + ⋅ + + +      
       

   + −  = + + − +    
     

 (72) 

 

Which finally gives the desired result: 

 

 ( ) ( )
12

2

4 2 1 1 8 21 3 8
2

T wR
R

β π
π π

λ β γβ

−   + −  = + + − +    
     

 (73) 

 

Formal Virtual Work Approach 

In the empirical approach carried out above there were some steps that are not 

obvious. Within a formal application of virtual work we will see how the results of 

the empirical approach are obtained ‘naturally’. 

 

Following the methodology of the formal virtual work approach of Example 4, we 

can immediately jump to equation (46): 

 

 
0 0

0
L L

Ay
M T PLM ds T ds P
EI GJ EA

δ δ δ δ   ⋅ = ⋅ + ⋅ + ⋅      ∫ ∫  (74) 

 

For the next step we need to recognize that the unit redundant causes bending about 

both axes of bending and so the first term in equation (74) must become: 

 

 
0 0 0

L L L
Y Z

Y Z
Y Z

M M MM ds M ds M ds
EI EI EI

δ δ δ
     ⋅ = ⋅ + ⋅         

∫ ∫ ∫  (75) 
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In which the notation YM  and ZM  indicate the final bending moments of the actual 

structure about the Y-Y and Z-Z axes of bending respectively. Again we use 

superposition for the moments, torques and axial forces: 

 

 

0 1

0 1

0 1

0 1

Y Y Y

Z Z Z

M M M
M M M

T T T
P P P

α
α
α
α

= +

= +

= +

= +

 (76) 

 

We do not require more torsion terms since there is only torsion in the z-y plane. With 

equations (75) and (76), equation (74) becomes: 

 

 

( ) ( )

( ) ( )

0 1 0 1

0 0

0 1 0 1

0

0
L L

Y Y Z Z
Y Z

Y Z

L

M M M M
M ds M ds

EI EI

T T P P L
T ds P

GJ EA

α α
δ δ

α α
δ δ

   + +
= ⋅ + ⋅   

      
 + +

+ ⋅ + ⋅ 
  

∫ ∫

∫

 (77) 

 

Multiplying out gives: 

 

 

0 1

0 0

0 1

0 0

0 1

0 0

0 1

0
L L

Y Y
Y Y

Y Y

L L
Z Z

Z Z
Z Z

L L

M MM ds M ds
EI EI

M MM ds M ds
EI EI

T TT ds T ds
GJ GJ

P L P LP P
EA EA

δ α δ

δ α δ

δ α δ

δ α δ

= ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅

+ ⋅ + ⋅ ⋅

∫ ∫

∫ ∫

∫ ∫

 (78) 

 

At this point we recognize that some of the terms are zero: 



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 46 

• There is no axial force in the primary structure since the cable is ‘cut’, and so 
0 0P = ; 

• There is no bending in the x-y plane (about the z-z axis of the beam) in the 

primary structure as the loading is purely vertical, thus 0 0ZM = . 

Including these points, and solving for α  gives: 

 

 

0 0

0 0
1 1 1 1

0 0 0

L L
Y

Y
Y

L L L
Y Z

Y Z
Y Z

M TM ds T ds
EI GJ

M M T P LM ds M ds T ds P
EI EI GJ EA

δ δ
α

δ δ δ δ

 
⋅ + ⋅ 

 = −
 

⋅ + ⋅ + ⋅ + ⋅ 
 

∫ ∫

∫ ∫ ∫
 (79) 

 

We will next examine this expression term-by-term. 

 
0

0

L
Y

Y
Y

M M ds
EI

δ⋅∫  

For this term, 0
YM  are the moments caused by the UDL about the y-y axis of bending, 

as per  equation (13): 

 

 ( ) ( )0 2 1 cosYM wRθ θ= −  (80) 

 

YMδ  are the moments about the same axis caused by the unit redundant. Since this 

redundant acts at an angle of 45° to the plane of interest, these moments are caused 

by its vertical component of 1
2

. From equation (4), we thus have: 

 

 ( ) 1 sin
2YM Rδ θ θ= −  (81) 
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Notice that we have taken it that downwards loading causes positive bending 

moments. Thus we have: 

 

 
( )

( )

0
2

0 0

23

0

1 11 cos sin
2

sin sin cos
2

L L
Y

Y
Y Y

Y

M M ds wR R ds
EI EI

wR Rd
EI

π

δ θ θ

θ θ θ θ

  ⋅ = − −    

= − −

∫ ∫

∫
 (82) 

 

In which we have used the relation ds Rdθ= . From the integral appendix we thus 

have: 

 

 
[ ]

( ) ( ) ( ) ( )

20 4
2

0
00

3

1cos cos2
42

10 1 1 1
42

L
Y

Y
Y Y

Y

M wRM ds
EI EI

wR
EI

π
πδ θ θ

   ⋅ = − − − −     

 = − − − + − −        

∫
 (83) 

 

And so finally: 

 

 
0 4

0 2 2

L
Y

Y
Y Y

M wRM ds
EI EI

δ⋅ = −∫  (84) 

 
0

0

L T T ds
GJ

δ⋅∫  

The torsion caused by the UDL in the primary structure is the same as that from 

equation (14): 

 

 ( ) ( )0 2 sinT wRθ θ θ= −  (85) 
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Similarly to the bending term, the torsion caused by the unit redundant is 1
2

 that of 

the unit load of  equation (17): 

 

 ( ) ( )1 1 cos
2

T Rδ θ θ= − −  (86) 

 

Again note that we take the downwards loads as causing positive torsion. Noting 

ds Rdθ=  we thus have: 

 

 
( ) ( )

( )( )

20
2

0 0

24

0

1 1sin 1 cos
2

sin 1 cos
2

L T T ds wR R Rd
GJ GJ

wR d
GJ

π

π

δ θ θ θ θ

θ θ θ θ

  ⋅ = − − −    

= − − −

∫ ∫

∫
 (87) 

 

This integral is exactly that of the second term in equation (19). Hence we can take its 

result from equation (20) to give:  

 

 
( )220 4

0

2
82

L T wRT ds
GJ GJ

π
δ

−
⋅ = − ⋅∫  (88) 

 

 
1

0

L
Y

Y
Y

M M ds
EI

δ⋅∫  

For this term we recognize that 1
Y YM Mδ=  and are the moments caused by the 1

2
 

component of the unit redundant in the vertical direction and are thus given by 

equation (1): 
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 ( )1 1 sin
2Y YM M Rδ θ θ= =  (89) 

 

Hence this term becomes: 

 

 

1 2

0 0

3 2
2

0

1 1 1sin sin
2 2

sin
2

L
Y

Y
Y Y

Y

M M ds R R Rd
EI EI

R d
EI

π

π

δ θ θ θ

θ θ

   ⋅ =       

=

∫ ∫

∫
 (90) 

 

From the integral tables we thus have: 

 

 

( )

21 3

0 0

3

1 sin 2
2 2 4

1 0 0 0
2 4 4

L
Y

Y
Y Y

Y

M RM ds
EI EI

R
EI

πθδ θ

π

 ⋅ = −  

  = − ⋅ − −    

∫
 (91) 

 

And so we finally have: 

 

 
1 3

0 8

L
Y

Y
Y Y

M RM ds
EI EI

πδ⋅ = ⋅∫  (92) 

 
1

0

L
Z

Z
Z

M M ds
EI

δ⋅∫  

Again we recognize that 1
Z ZM Mδ=  and are the moments caused by the 1

2
 

component of the unit redundant in the x-y plane and are thus given by equation (57). 

Hence this term becomes: 
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1 2

0 0

1 1 1sin sin
2 2

L
Y

Y
Y Y

M M ds R R Rd
EI EI

π

δ θ θ θ   ⋅ =       
∫ ∫  (93) 

 

This is the same as equation (90) except for the different flexural rigidity, and so the 

solution is got from equation (92) to be: 

 

 
1 3

0 8

L
Z

Z
Z Z

M RM ds
EI EI

πδ⋅ = ⋅∫  (94) 

 
1

0

L T T ds
GJ

δ⋅∫  

Once again note that 1T Tδ=  and are the torques caused by the 1
2

 vertical 

component of the unit redundant. From equation (2), then we have: 

 

 ( )1 1 1 cos
2

T T Rδ θ= = −  (95) 

 

Thus: 

 

 
( ) ( )

( )

21

0 0

23
2

0

1 1 11 cos 1 cos
2 2

1 cos
2

L T T ds R R Rd
GJ GJ

R d
GJ

π

π

δ θ θ θ

θ θ

   ⋅ = − −      

= −

∫ ∫

∫
 (96) 

 

This integral is that of equation (9) and so the solution is: 
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1 3

0

3 8
8

L T RT ds
GJ GJ

πδ − ⋅ =  
 ∫  (97) 

 
1P L P

EA
δ⋅  

Lastly then, since 1 1P Pδ= =  and 2L R= , this term is easily calculated to be: 

 

 
1 2P L RP

EA EA
δ⋅ =  (98) 

 

With the values for all terms now worked out, we substitute these values into 

equation (79) to determine the cable tension: 

 

 

( )224 4

3 3 3

2
82 2 2

3 8 2
8 8 8

Y

Y Z

wR wR
EI GJ

R R R R
EI EI GJ EA

π

α
π π π

 −
 − − ⋅
 
 = −

 − ⋅ + ⋅ + +  
  

 (99) 

 

Cancelling the negatives and re-arranging gives: 

 

 

( )2

4

3

2

21 1
2 2 8 2

1 1 1 3 8 2 2
2 4 4

Y

Y z

wR
GJEI

T
R

EI EI GJ R EA

π

π π

 −
+ ⋅ 

  =
   − + + +   

   

 (100) 

 

And this is the same as equation (70) and so the solution can proceed as before to 

obtain the tension in the cable as per equation (73).  

 



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 52 

Comparison of the virtual work with the empirical form illustrates the interpretation 

of each of the terms in the virtual work equation that is inherent in the empirical view 

of such problems. 
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3.2.6 Review of Examples 1 – 5 

Example 1 

For a radius of 2 m and a point load of 10 kN, the bending and torsion moment 

diagrams are: 

 

 
 

Using the equations derived in Example 1, the Matlab script for this is: 

 
function RingBeam_Ex1 
% Example 1 
R = 2;      % m 
P = 10;     % kN 
  
theta = 0:(pi/2)/50:pi/2; 
M = P*R*sin(theta); 
T = P*R*(1-cos(theta)); 
  
hold on; 
plot(theta.*180/pi,M,'k-'); 
plot(theta.*180/pi,T,'r--'); 
ylabel('Moment (kNm)'); 
xlabel('Degrees from Y-axis'); 
legend('Bending','Torsion','location','NW'); 
hold off; 
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Example 2 

For a radius of 2 m and a UDL of 10 kN/m, the bending and torsion moment 

diagrams are: 

 

 
 

Using the equations derived in Example 2, the Matlab script for this is: 

 
function RingBeam_Ex2 
% Example 2 
R = 2;      % m 
w = 10;     % kN/m 
  
theta = 0:(pi/2)/50:pi/2; 
M = w*R^2*(1-cos(theta)); 
T = w*R^2*(theta-sin(theta)); 
  
hold on; 
plot(theta.*180/pi,M,'k-'); 
plot(theta.*180/pi,T,'r--'); 
ylabel('Moment (kNm)'); 
xlabel('Degrees from Y-axis'); 
legend('Bending','Torsion','location','NW'); 
hold off; 
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Example 3 

For the parameters given below, the bending and torsion moment diagrams are: 

 

 
 

Using the equations derived in Example 3, the Matlab script for this is: 

 
function [M T alpha] = RingBeam_Ex3(beta) 
% Example 3 
R = 2;              % m 
w = 10;             % kN/m 
I = 2.7e7;          % mm4 
J = 5.4e7;          % mm4 
E = 205;            % kN/mm2 
v = 0.30;           % Poisson's Ratio 
G = E/(2*(1+v));    % Shear modulus 
EI = E*I/1e6;       % kNm2 
GJ = G*J/1e6;       % kNm2 
if nargin < 1 
    beta = GJ/EI;       % Torsion stiffness ratio 
end     
  
alpha = w*R*(4*beta+(pi-2)^2)/(2*beta*pi+2*(3*pi-8)); 
  
theta = 0:(pi/2)/50:pi/2; 

0 10 20 30 40 50 60 70 80 90
-10

-5

0

5

10

15

20

X: 90
Y: 17.19

X: 59.4
Y: -4.157

X: 90
Y: 0.02678M

om
en

t (
kN

m
)

Degrees from Y-axis

X: 28.8
Y: -6.039

Bending
Torsion



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 56 

M0 = w*R^2*(1-cos(theta)); 
T0 = w*R^2*(theta-sin(theta)); 
M1 = -R*sin(theta); 
T1 = -R*(1-cos(theta)); 
  
M = M0 + alpha.*M1; 
T = T0 + alpha.*T1; 
  
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,M,'k-'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('Bending','Torsion','location','NW'); 
    hold off; 
end 

 

The vertical reaction at A is found to be 11.043 kN. Note that the torsion is 

(essentially) zero at support B. Other relevant values for bending moment and torsion 

are given in the graph. 

 

By changing β , we can examine the effect of the relative stiffnesses on the vertical 

reaction at A, and consequently the bending moments and torsions. In the following 

plot, the reaction at A and the maximum and minimum bending and torsion moments 

are given for a range of β  values. 

 

Very small values of β  reflect little torsional rigidity and so the structure movements 

will be dominated by bending solely. Conversely, large values of β  reflect structures 

with small bending stiffness in comparison to torsional stiffness. At either extreme 

the variables converge to asymptotes of extreme behaviour. For 0.1 10β≤ ≤  the 

variables are sensitive to the relative stiffnesses. Of course, this reflects the normal 

range of values for β . 
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The Matlab code to produce this figure is: 

 
% Variation with Beta 
beta = logspace(-3,3); 
n = length(beta); 
for i = 1:n 
    [M T alpha] = RingBeam_Ex3(beta(i)); 
    Eff(i,1) = alpha; 
    Eff(i,2) = max(M); 
    Eff(i,3) = min(M); 
    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
  
hold on; 
plot(beta,Eff(:,1),'b:'); 
plot(beta,Eff(:,2),'k-','LineWidth',2); 
plot(beta,Eff(:,3),'k-'); 
plot(beta,Eff(:,4),'r--','LineWidth',2); 
plot(beta,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'); 
legend('Va','Max M','Min M','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Beta'); 
ylabel('Load Effect (kN & kNm)'); 
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Example 4 

For a 20 mm diameter cable, and for the other parameters given below, the bending 

and torsion moment diagrams are: 

 

 
 

The values in the graph should be compared to those of Example 3, where the support 

was rigid. The Matlab script, using Example 4’s equations, for this problem is: 

 
function [M T alpha] = RingBeam_Ex4(gamma,beta) 
% Example 4 
R = 2;              % m - radius of beam 
L = 2;              % m - length of cable 
w = 10;             % kN/m - UDL 
A = 314;            % mm2 - area of cable 
I = 2.7e7;          % mm4 
J = 5.4e7;          % mm4 
E = 205;            % kN/mm2 
v = 0.30;           % Poisson's Ratio 
G = E/(2*(1+v));    % Shear modulus 
EA = E*A;           % kN - axial stiffness 
EI = E*I/1e6;       % kNm2 
GJ = G*J/1e6;       % kNm2 
if nargin < 2 
    beta = GJ/EI;       % Torsion stiffness ratio 
end 
if nargin < 1 
    gamma = EA/EI;      % Axial stiffness ratio 
end 
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alpha = w*R*(4*beta+(pi-2)^2)/(2*beta*pi+2*(3*pi-8)+8*(beta/gamma)*(L/R^3)); 
  
theta = 0:(pi/2)/50:pi/2; 
M0 = w*R^2*(1-cos(theta)); 
T0 = w*R^2*(theta-sin(theta)); 
M1 = -R*sin(theta); 
T1 = -R*(1-cos(theta)); 
  
M = M0 + alpha.*M1; 
T = T0 + alpha.*T1; 
  
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,M,'k-'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('Bending','Torsion','location','NW'); 
    hold off; 
end 

 

Whist keeping the β  constant, we can examine the effect of varying the cable 

stiffness on the behaviour of the structure, by varying γ . Again we plot the reaction 

at A and the maximum and minimum bending and torsion moments for the range of 

γ  values. 

 

For small γ , the cable has little stiffness and so the primary behaviour will be that of 

Example 1, where the beam was a pure cantilever. Conversely for high γ , the cable is 

very stiff and so the beam behaves as in Example 3, where there was a pinned support 

at A. Compare the maximum (hogging) bending moments for these two cases with 

the graph. Lastly, for 0.01 3γ≤ ≤ , the cable and beam interact and the variables are 

sensitive to the exact ratio of stiffness. Typical values in practice are towards the 

lower end of this region. 
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The Matlab code for this plot is: 

 
% Variation with Gamma 
gamma = logspace(-3,3); 
n = length(gamma); 
for i = 1:n 
    [M T alpha] = RingBeam_Ex4(gamma(i)); 
    Eff(i,1) = alpha; 
    Eff(i,2) = max(M); 
    Eff(i,3) = min(M); 
    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
  
hold on; 
plot(gamma,Eff(:,1),'b:'); 
plot(gamma,Eff(:,2),'k-','LineWidth',2); 
plot(gamma,Eff(:,3),'k-'); 
plot(gamma,Eff(:,4),'r--','LineWidth',2); 
plot(gamma,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'); 
legend('T','Max M','Min M','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Gamma'); 
ylabel('Load Effect (kN & kNm)'); 
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Example 5 

Again we consider a 20 mm diameter cable, and a doubly symmetric section, that is 

Y ZEI EI= . For the parameters below the bending and torsion moment diagrams are: 

 

 
 

The values in the graph should be compared to those of Example 4, where the cable 

was vertical. The Matlab script, using Example 5’s equations, for this problem is: 

 
function [My T alpha] = RingBeam_Ex5(lamda,gamma,beta) 
% Example 5 
R = 2;              % m - radius of beam 
w = 10;             % kN/m - UDL 
A = 314;            % mm2 - area of cable 
Iy = 2.7e7;         % mm4 
Iz = 2.7e7;         % mm4 
J = 5.4e7;          % mm4 
E = 205;            % kN/mm2 
v = 0.30;           % Poisson's Ratio 
G = E/(2*(1+v));    % Shear modulus 
EA = E*A;           % kN - axial stiffness 
EIy = E*Iy/1e6;     % kNm2 
EIz = E*Iz/1e6;     % kNm2 
GJ = G*J/1e6;       % kNm2 
if nargin < 3 
    beta = GJ/EIy;      % Torsion stiffness ratio 
end 
if nargin < 2 
    gamma = EA/EIy;     % Axial stiffness ratio 
end 
if nargin < 1 
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    lamda = EIy/EIz;    % Bending stiffness ratio 
end 
  
numerator = (4*beta+(pi-2)^2)/(beta*sqrt(2)); 
denominator = (pi*(1+1/lamda)+(3*pi-8)/beta+8*sqrt(2)/(gamma*R^2)); 
alpha = w*R*numerator/denominator; 
  
theta = 0:(pi/2)/50:pi/2; 
M0y = w*R^2*(1-cos(theta)); 
M0z = 0; 
T0 = w*R^2*(theta-sin(theta)); 
M1y = -R*sin(theta); 
M1z = -R*sin(theta); 
T1 = -R*(1-cos(theta)); 
  
My = M0y + alpha.*M1y; 
Mz = M0z + alpha.*M1z; 
T = T0 + alpha.*T1; 
  
if nargin < 1 
    hold on; 
    plot(theta.*180/pi,My,'k'); 
    plot(theta.*180/pi,Mz,'k:'); 
    plot(theta.*180/pi,T,'r--'); 
    ylabel('Moment (kNm)'); 
    xlabel('Degrees from Y-axis'); 
    legend('YY Bending','ZZ Bending','Torsion','location','NW'); 
    hold off; 
end 

 

Keep all parameters constant, but varying the ratio of the bending rigidities by 

changing λ , the output variables are as shown below. For low λ  (a tall slender 

beam) the beam behaves as a cantilever. Thus the cable requires some transverse 

bending stiffness to be mobilized. With high λ  (a wide flat beam) the beam behaves 

as if supported at A with a vertical roller. Only vertical movement takes place, and the 

effect of the cable is solely its vertical stiffness at A. Usually 0.1 2λ≤ ≤  which means 

that the output variables are usually quite sensitive to the input parameters. 
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The Matlab code to produce this graph is: 

 
% Variation with Lamda 
lamda = logspace(-3,3); 
n = length(lamda); 
for i = 1:n 
    [My T alpha] = RingBeam_Ex5(lamda(i)); 
    Eff(i,1) = alpha; 
    Eff(i,2) = max(My); 
    Eff(i,3) = min(My); 
    Eff(i,4) = max(T); 
    Eff(i,5) = min(T); 
end 
  
hold on; 
plot(lamda,Eff(:,1),'b:'); 
plot(lamda,Eff(:,2),'k-','LineWidth',2); 
plot(lamda,Eff(:,3),'k-'); 
plot(lamda,Eff(:,4),'r--','LineWidth',2); 
plot(lamda,Eff(:,5),'r--'); 
hold off; 
set(gca,'xscale','log'); 
legend('T','Max My','Min My','Max T','Min T','Location','NO',... 
    'Orientation','horizontal'); 
xlabel('Lamda'); 
ylabel('Load Effect (kN & kNm)'); 
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3.3 Grid Examples 

3.3.1 Example 1 

Problem 

For the grid structure shown, which has flexural and torsional rigidities of EI and GJ 

respectively, show that the vertical reaction at C is given by: 

 

 1
2 3CV P

β
 

=  + 
  

 

Where 

 

 EI
GJ

β =  
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Solution 

Using virtual work, we have: 

 

 
0

0

E I

W
W W

M TM ds T ds
EI GJ

δ
δ δ

δ δ

=
=

= ⋅ + ⋅∫ ∫

 (101) 

 

Choosing the vertical reaction at C as the redundant gives the following diagrams: 

 

 

  
 

And the free bending moment diagram is: 

 



Structural Analysis IV Chapter 3 – Virtual Work: Advanced Examples 

Dr. C. Caprani 66 

 
 

But the superposition gives: 

 

 0 1M M Mα= +  (102) 

 0 1T T Tα= +  (103) 

 

Substituting, we get: 

 

 ( ) ( )0 1 0 10
M M T T

M ds T ds
EI GJ
α α

δ δ
+ +

= ⋅ + ⋅∫ ∫  (104) 

 
2 2

0 1 1 0 1 1 0M M M T T Tds ds ds ds
EI EI GJ GJ

α α+ + + =∫ ∫ ∫ ∫  (105) 

 
2 2

0 1 1 0 1 1 0M M M T T Tds ds ds ds
EI EI GJ GJ

α α+ + + =∫ ∫ ∫ ∫  (106) 

 

Taking the beam to be prismatic, and EI
GJ

β =  gives: 

 

 2 2
0 1 1 0 1 1 0M M ds M ds T T ds T dsα β αβ+ + + =∫ ∫ ∫ ∫  (107) 
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From which: 

 

 0 1 0 1

2 2
1 1

M M ds T T ds

M ds T ds

β
α

β

 + = −
 + 

∫ ∫
∫ ∫

 (108) 

 

From the various diagrams and volume integrals tables, the terms evaluate to: 

 

 

( )( )( )

( )

( )( )( )

( )( )( )

3

0 1

0 1

2 3
1

2 3
1

1
3 3
0 0

1 22
3 3

PLM M ds L PL L

T T ds

M ds L L L L

T ds L L L L

β β

β β β

= − = −

= =

 = = 
 

= =

∫
∫

∫

∫

 (109) 

 

Substituting gives: 

 

 

( )

3

3 3

3

3 2
3

0
3

2
3

1 1
3

PL

L L

PL
L

α
β

β

 
− + 
 = −
 +  

= ⋅ ⋅
+

 (110) 

 

Which yields: 

 

 1
2 3CV Pα

β
 

≡ =  + 
 (111) 
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Numerical Example 

Using a 200 × 400 mm deep rectangular concrete section, gives the following: 

 

 3 4 3 41.067 10  m 0.732 10  mI J= × = ×  

 

The material model used is for a 50N concrete with: 

 

 230 kN/mm 0.2E ν= =  

 

Using the elastic relation, we have: 

 

 
( ) ( )

6
6 230 10 12.5 10  kN/m

2 1 2 1 0.2
EG
ν

×
= = = ×

+ +
 

 

From the model, LUSAS gives: 0.809 kNCV = . Other results follow. 

 

 
Deflected Shape 
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Bending Moment Diagram 

 

 
Torsion Moment Diagram 

 

 
Shear Force Diagram 
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3.3.2 Example 2 

Problem 

For the grid structure shown, which has flexural and torsional rigidities of EI and GJ 

respectively, show that the reactions at C are given by: 

 

 4 4 4 2
8 5 8 5C CV P M PLβ β
β β

   + +
= =   + +   

  

 

Where 

 

 EI
GJ

β =  

 

 
 

(Note that the support symbol at C indicates a moment and vertical support at C, but 

no torsional restraint.) 
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Solution 

The general virtual work equations are: 

 

 
0

0

E I

W
W W

M TM ds T ds
EI GJ

δ
δ δ

δ δ

=
=

= ⋅ + ⋅∫ ∫

 (112) 

 

We choose the moment and vertical restraints at C as the redundants. The vertical 

redundant gives the same diagrams as before: 

 

  
 

And, for the moment restraint, we apply a unit moment: 

 

 
 

Which yields the following: 
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Again the free bending moment diagram is: 

 

 
 

Since there are two redundants, there are two possible equilibrium sets to use as the 

virtual moments and torques. Thus there are two equations that can be used: 

 

 1 10 M TM ds T ds
EI GJ

= ⋅ + ⋅∫ ∫  (113) 

 2 20 M TM ds T ds
EI GJ

= ⋅ + ⋅∫ ∫  (114) 
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Superposition gives: 

 

 0 1 1 2 2M M M Mα α= + +  (115) 

 0 1 1 2 2T T T Tα α= + +  (116) 

 

Substituting, we get from equation (113): 

 

 ( ) ( )0 1 1 2 2 0 1 1 2 2
1 10

M M M T T T
M ds T ds

EI GJ
α α α α+ + + +

= ⋅ + ⋅∫ ∫  (117) 

 

2
0 1 1 2 1

1 2

2
0 1 1 2 1

1 2 0

M M M M Mds ds ds
EI EI EI

T T T T Tds ds ds
GJ GJ GJ

α α

α α

+ +

+ + + =

∫ ∫ ∫

∫ ∫ ∫
 (118) 

 

Taking the beam to be prismatic, and EI
GJ

β =  gives: 

 

 
2

0 1 1 1 2 2 1

2
0 1 1 1 1 2 1 0

M M ds M ds M M ds

T T ds T ds T T ds

α α

β α β α β

+ +

+ + + =

∫ ∫ ∫
∫ ∫ ∫

 (119) 

 

Similarly, substituting equations (115) and (116) into equation (114) gives: 

 

 
2

0 2 1 1 2 2 2

2
0 2 1 1 2 2 2 0

M M ds M M ds M ds

T T ds TT ds T ds

α α

β α β α β

+ +

+ + + =

∫ ∫ ∫
∫ ∫ ∫

 (120) 

 

We can write equations (119) and (120) in matrix form for clarity: 
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0 1 0 1

0 2 0 2

2 2
1 1 2 1 2 1 1

2 2
21 2 1 2 2 2

0

M M ds T T ds

M M ds T T ds

M ds T ds M M ds T T ds

M M ds TT ds M ds T ds

β

β

β β α
αβ β

 +  + 
+  

 + +    =  + +   

∫ ∫
∫ ∫

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (121) 

 

Evaluating the integrals for the first equation gives: 

 

 

3

0 1 0 1

3
2 2 3

1 1

2 2
2 1 2 1

0
3

2
3

1
2

PLM M ds T T ds

LM ds T ds L

M M ds L T T ds L

β

β β

β β

−
= =

= =

= − = −

∫ ∫

∫ ∫

∫ ∫

 (122) 

 

And for the second: 

 

 

0 2 0 2

2 2
1 2 1 2

2 2
2 2

0 0

1
2

M M ds T T ds

M M ds L TT ds L

M ds L T ds L

β

β β

β β

= =

= − = −

= =

∫ ∫

∫ ∫
∫ ∫

 (123) 

 

Substituting these into equation (121), we have: 

 

 
( )

3 23

1

22

2
3 2

03
0 1

2

L LPL

L L

β β
α
α

β β

 1    + − +        −      + =   
 1     − + +      

 (124) 

 

Giving: 
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( )

1
3 2 3

1

2 2

2
3 2

3
01

2

L L PL

L L

β β
α
α

β β

−
 1    + − +              =   
 1    − + +      

 (125) 

 

Inverting the matrix gives: 

 

 
( ) ( )

( ) ( )

3
3 2

1

2
2

12 61 1 2
1

35 8 6 4 01 2 2 3

PLL L

L L

β β
α
α β

β β

    + +              =   +        + +          

 (126) 

 

Thus: 

 

 
( )

( )

( )
( )

3

3
1

3
2

2

12 1
3 4 11

2 1 25 8 5 86 1 2
3

PL
L P

LPL
L

β
βα
βα β β

β

    +     +       = =     ++ +       +      

 (127) 

 

Thus, since 1

2

C

C

V
M

α
α

  
≡   

   
, we have: 

  

 4 4 4 2
8 5 8 5C CV P M PLβ β
β β

   + +
= =   + +   

 (128) 

 

And this is the requested result. 
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Some useful Matlab symbolic computation script appropriate to this problem is: 

 
syms beta L P 
  
A = [  L^3*(2/3+beta) -L^2*(0.5+beta); 
       -L^2*(0.5+beta)  L*(1+beta)]; 
  
A0 = [P*L^3/3; 0]; 
invA = inv(A); 
invA = simplify(invA); 
disp(simplify(det(A))); 
disp(invA); 
alpha = invA*A0; 
alpha = simplify(alpha); 
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Numerical Example 

For the numerical model previously considered, for these support conditions, LUSAS 

gives us: 

 

 5.45 kN 14.5 kNmC CV M= =  

 

 
Deflected Shape 

 

 
Shear Force Diagram 
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Torsion Moment Diagram 

 

 
Bending Moment Diagram 
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3.3.3 Example 3 

Problem 

For the grid structure shown, which has flexural and torsional rigidities of EI and GJ 

respectively, show that the reactions at C are given by: 

 

 ( )
( ) ( )
2 1 1

2 4 1 4 1C C C

P PL PLV M T
β
β β

+
= = ⋅ = ⋅

+ +
  

 

Where 

 

 EI
GJ

β =  
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Solution 

The general virtual work equations are: 

 

 
0

0

E I

W
W W

M TM ds T ds
EI GJ

δ
δ δ

δ δ

=
=

= ⋅ + ⋅∫ ∫

 (129) 

 

We choose the moment, vertical, and torsional restraints at C as the redundants. The 

vertical and moment redundants give (as before): 

 

  
 

  
 

Applying the unit torsional moment gives: 
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Again the free bending moment diagram is: 

 

 
 

Since there are three redundants, there are three possible equilibrium sets to use. Thus 

we have the following three equations: 
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 1 10 M TM ds T ds
EI GJ

= ⋅ + ⋅∫ ∫  (130) 

 2 20 M TM ds T ds
EI GJ

= ⋅ + ⋅∫ ∫  (131) 

 3 30 M TM ds T ds
EI GJ

= ⋅ + ⋅∫ ∫  (132) 

 

Superposition of the structures gives: 

 

 0 1 1 2 2 3 3M M M M Mα α α= + + +  (133) 

 0 1 1 2 2 3 3T T T T Tα α α= + + +  (134) 

 

Substituting, we get from equation (113): 

 

 ( ) ( )0 1 1 2 2 3 3 0 1 1 2 2 3 3
1 10

M M M M T T T T
M ds T ds

EI GJ
α α α α α α+ + + + + +

= ⋅ + ⋅∫ ∫  (135) 

 

2
0 1 1 2 1 3 1

1 2 3

2
0 1 1 2 1 3 1

1 2 3 0

M M M M M M Mds ds ds ds
EI EI EI EI

T T T T T T Tds ds ds ds
GJ GJ GJ GJ

α α α

α α α

+ + +

+ + + + =

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 (136) 

 

Taking the beam to be prismatic, and EI
GJ

β =  gives: 

 

 
2

0 1 1 1 2 2 1 3 3 1

2
0 1 1 1 2 2 1 3 3 1 0

M M ds M ds M M ds M M ds

T T ds T ds T T ds T T ds

α α α

β α β α β α β

+ + +

+ + + + =

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (137) 

 

Similarly, substituting equations (115) and (116) into equations (114) and (132) 

gives: 
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2

0 2 1 1 2 2 2 3 3 2

2
0 2 1 1 2 2 2 3 3 2 0

M M ds M M ds M ds M M ds

T T ds TT ds T ds T T ds

α α α

β α β α β α β

+ + +

+ + + + =

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (138) 

 
2

0 3 1 1 3 2 2 3 3 3

2
0 3 1 1 3 2 2 3 3 3 0

M M ds M M ds M M ds M ds

T T ds TT ds T T ds T ds

α α α

β α β α β α β

+ + +

+ + + + =

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (139) 

 

We can write equations (119), (120), and (139) in matrix form for clarity: 

 

 { } [ ]{ } { } [ ]{ } { }β β0 0M + δM α + T + δT α = 0  (140) 

 

Or more concisely: 

 

 { } [ ]{ } { }+ =0A δA α 0  (141) 

 

In which { }0A  is the ‘free’ actions vector: 

 

 { } { } { }
0 1 0 1

0 2 0 2

0 3 0 3

M M ds T T ds

M M ds T T ds

M M ds T T ds

β

β β

β

 +
 
 = = + 
 

+  

∫ ∫
∫ ∫
∫ ∫

0 0 0A M + T  (142) 

And [ ]δA  is the virtual actions matrix: 

 

 

[ ] [ ] [ ]
2 2

1 1 2 1 2 1 1 3 1 3

2 2
1 2 1 2 2 2 2 3 2 3

2 2
1 3 1 3 2 3 2 3 3 3

M ds T ds M M ds T T ds M M ds TT ds

M M ds TT ds M ds T ds M M ds T T ds

M M ds TT ds M M ds T T ds M ds T ds

β

β β β

β β β

β β β

=

 + + +
 
 = + + +
 
 + + + 

∫ ∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫ ∫
∫ ∫ ∫ ∫ ∫ ∫

δA δM + δT

(143) 
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And { }α  is the redundant multipliers vector: 

  

 { }
1

2

3

α
α
α

 
 =  
 
 

α  (144) 

 

Evaluating the free actions vector integrals gives: 

 

 

3

0 1 0 1

0 2 0 2

2

0 3 0 3

0
3

0 0

0
2

PLM M ds T T ds

M M ds T T ds

PLM M ds T T ds

β

β

β

−
= =

= =

= =

∫ ∫
∫ ∫

∫ ∫

 (145) 

 

The virtual moment and torsion integrals are (noting that the matrices are 

symmetrical): 

 

 

3 2 2
2

1 2 1 1 3

2
2 2 3

2
3

2
3 2 2

0

L L LM ds M M ds M M ds

M ds L M M ds

M ds L

= = − = −

= =

=

∫ ∫ ∫
∫ ∫

∫

 (146) 

 

 

2 3 2
1 2 1 1 3

2
2 2 3

2
3

0

0

T ds L T T ds L TT ds

T ds L T T ds

T ds L

= = − =

= =

=

∫ ∫ ∫
∫ ∫

∫

 (147) 

 

Substituting these integral results into equation (141) gives: 
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3 2 2
3 23

12
2

2
2

2 3

2
3 2 2

3
0 0 0

2

02 2

L L LL LPL

L L L L
PL L L L

β β
α

β β α
α

β

 
+ − − −   −     

      + − − + =    
         − +     

 (148) 

 

 ( )

( )

2
3 2 3

1
2

2
2

32

2 1
3 2 2

31 1 0 0
2

0 1 2
2

LL L PL

L L
PL

L L

β β
α

β β α
α

β

    + − + −              
       − + + =     

            −
 − +   

 

 (149) 

 

Inverting the matrix gives: 

 

 
( )( ) ( )( )

( )( ) ( )( )

3 2 2

1 2

2 2

3

2

6 1 3 2 1 3 1
4 1 4 1 4 1

3 2 1 1 12 20 5 3 2 1
4 1 2 4 1 1 2 4 1 1

3 1 3 2 1 1 8 5
4 1 2 4 1 1 2 4 1 1

L L L

L L L

L L L

β β
β β β

α
β β β βα
β β β β β

α
β β

β β β β β

      + +      + + +      
       + + + +   =       + + + + +         

      + +
     + + + + +      

3

2

3
0

2

PL

PL

 
 
  
 
 
 −  


(150) 

 

Thus: 
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( )

( )

3 2

3 2

1 3 2

2 2

3 3 2

2

6 31
3 2

1 3 3 2 12 1
4 1 3 2 2 1

3 1 8 5
3 2 2 1

PL PL
L L

PL PL
L L

PL PL
L L

β
α

βα β
β β

α
β
β

    + −    
          +      = + −         + +         

    +    −    +      

 (151) 

 

Simplifying, we get: 

 

 ( )
( )

( )

1

2

3

2
2 1

4 1
1

4 1

P

PL

PL

α
β

α
β

α

β

 
 
    +   = ⋅   +   

   
⋅ 

+  

 (152) 

 

 

Since the redundants chosen are the reactions required, the problem is solved. 

 

Some useful Matlab symbolic computation script appropriate to this problem is: 

 
syms beta L P 
  
A = [  L^3*(beta+2/3)  -L^2*(beta+0.5)  -L^2/2; 
       -L^2*(beta+0.5) L*(beta+1)         0; 
       -L^2/2           0              L*(beta+1)]; 
  
A0 = [P*L^3/3; 0; -P*L^2/2]; 
invA = inv(A); 
invA = simplify(invA); 
disp(simplify(det(A))); 
disp(invA); 
alpha = invA*A0; 
alpha = simplify(alpha); 
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Numerical Example 

For the numerical model previously considered, for these support conditions, LUSAS 

gives us: 

 

 5.0 kN 13.3 kNm 1.67 kNmC C CV M T= = =  

 

 
Deflected Shape 

 

 
Shear Force Diagram 
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Torsion Moment Diagram 

 

 
Bending Moment Diagram 
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