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2.1 Introduction 

2.1.1 Purpose 

Previously we only used virtual work to analyse structures whose members primarily 

behaved in flexure or in axial forces. Many real structures are comprised of a mixture 

of such members. Cable-stay and suspension bridges area good examples: the deck-

level carries load primarily through bending whilst the cable and pylon elements 

carry load through axial forces mainly. A simple example is a trussed beam: 

 

 
 

Other structures carry load through a mixture of bending, axial force, torsion, etc. Our 

knowledge of virtual work to-date is sufficient to analyse such structures. 
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2.2 Virtual Work Development 

2.2.1 The Principle of Virtual Work 

This states that: 

 

A body is in equilibrium if, and only if, the virtual work of all forces acting on 

the body is zero. 

 

In this context, the word ‘virtual’ means ‘having the effect of, but not the actual form 

of, what is specified’. 

 

There are two ways to define virtual work, as follows. 

 

1. Virtual Displacement:  

Virtual work is the work done by the actual forces acting on the body moving 

through a virtual displacement. 

 

2. Virtual Force:  

Virtual work is the work done by a virtual force acting on the body moving 

through the actual displacements. 

 

Virtual Displacements 

A virtual displacement is a displacement that is only imagined to occur: 

• virtual displacements must be small enough such that the force directions are 

maintained. 
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• virtual displacements within a body must be geometrically compatible with 

the original structure. That is, geometrical constraints (i.e. supports) and 

member continuity must be maintained.  

Virtual Forces 

A virtual force is a force imagined to be applied and is then moved through the actual 

deformations of the body, thus causing virtual work. 

 

Virtual forces must form an equilibrium set of their own. 

 

Internal and External Virtual Work 

When a structures deforms, work is done both by the applied loads moving through a 

displacement, as well as by the increase in strain energy in the structure. Thus when 

virtual displacements or forces are causing virtual work, we have: 

 

0
0I E

E I

W
W W

W W

δ
δ δ

δ δ

=
− =

=

 

 

 where 

• Virtual work is denoted Wδ  and is zero for a body in equilibrium; 

• External virtual work is EWδ , and; 

• Internal virtual work is IWδ . 

 

And so the external virtual work must equal the internal virtual work. It is in this 

form that the Principle of Virtual Work finds most use. 
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Application of Virtual Displacements 

For a virtual displacement we have: 

 

0

E I

i i i i

W
W W

F y P e

δ
δ δ

δ δ

=
=

⋅ = ⋅∑ ∑
 

 

In which, for the external virtual work, iF  represents an externally applied force (or 

moment) and iyδ  its virtual displacement. And for the internal virtual work, iP  

represents the internal force (or moment) in member i and ieδ  its virtual deformation. 

The summations reflect the fact that all work done must be accounted for.  

 

Remember in the above, each the displacements must be compatible and the forces 

must be in equilibrium, summarized as: 

 

 

 

Set of forces in 

equilibrium  

Set of compatible 

displacements  
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Application of Virtual Forces 

When virtual forces are applied, we have: 

 

0

E I

i i i i

W
W W

y F e P

δ
δ δ

δ δ

=
=

⋅ = ⋅∑ ∑
 

 

And again note that we have an equilibrium set of forces and a compatible set of 

displacements: 

 

 
 

In this case the displacements are the real displacements that occur when the structure 

is in equilibrium and the virtual forces are any set of arbitrary forces that are in 

equilibrium. 

 

 

Set of compatible 

displacements 

Set of forces in 

equilibrium  
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2.2.2 Virtual Work for Deflections 

Deflections in Beams and Frames 

For a beam we proceed as: 

1. Write the virtual work equation for bending: 

 

 
0

E I

i i

W
W W

y F M

δ
δ δ

δ θ δ

=
=

⋅ = ⋅∑
 

 

2. Place a unit load, Fδ , at the point at which deflection is required; 

3. Find the real bending moment diagram, xM , since the real curvatures are given 

by: 

 

x
x

x

M
EI

θ =  

 

4. Solve for the virtual bending moment diagram (the virtual force equilibrium 

set), Mδ , caused by the virtual unit load. 

5. Solve the virtual work equation: 

 

 
0

1
L

x
x

My M dx
EI

δ ⋅ = ⋅  ∫  

 

6. Note that the integration tables can be used for this step. 
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2.2.3 Virtual Work for Indeterminate Structures 

General Approach 

Using compatibility of displacement, we have: 

 

 
    Final       =    Primary            +                  Reactant 

 

Next, further break up the reactant structure, using linear superposition: 

 

 
Reactant        =    Multiplier     ×    Unit Reactant 

 

We summarize this process as: 

 

 0 1M M Mα= +  

 

• M is the force system in the original structure (in this case moments); 

• 0M  is the primary structure force system; 

• 1M  is the unit reactant structure force system. 

The primary structure can be analysed, as can the unit reactant structure. Thus, the 

only unknown is the multiplier, α , for which we use virtual work to calculate. 
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Finding the Multiplier 

For beams and frames, we have: 

 

( )210 1

0 0

0
L L

ii

i i

MM M dx dx
EI EI

δδ α⋅
= + ⋅∑ ∑∫ ∫  

Thus: 

( )

0 1

0
21

0

L
i

i

L
i

i

M M dx
EI

M
dx

EI

δ

α
δ

⋅−
=
∑∫

∑∫
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2.2.4 Virtual Work for Compound Structures 

Basis 

In the general equation for Virtual Work: 

 

 i i i iy F e Pδ δ⋅ = ⋅∑ ∑  

 

We note that the summation on the right hand side is over all forms of real 

displacement and virtual force combinations. For example, if a member is in 

combined bending and axial force, then we must include the work done by both 

effects: 

 

 
( ) ( ) ( )Axial BendingMemberiW e P e P

PL MP M dx
EA EI

δ δ δ

δ δ

= ⋅ + ⋅

= ⋅ + ⋅∫
 

 

The total Virtual Work done by any member is: 

 

 ( )Memberi
v

PL M T VW P M dx T V
EA EI GJ GA

δ δ δ δ δ= ⋅ + ⋅ + ⋅ + ⋅∫  

 

In which Virtual Work done by axial, bending, torsion, and shear, respectively, is 

accounted for. However, most members primarily act through only one of these stress 

resultants, and so we commonly have only one term per member. A typical example 

is when axial deformation of frame (bending) members is neglected; since the area is 

large the contribution to virtual work is small. 
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At the level of the structure as a whole, we must account for all such sources of 

Virtual Work. For the typical structures we study here, we account for the Virtual 

Work done by axial and flexural members separately: 

 

0

E I

i i i i i i

W
W W

y F e P M

δ
δ δ

δ δ θ δ

=
=

⋅ = ⋅ + ⋅∑ ∑ ∑
 

 

In which the first term on the RHS is the internal virtual work done by axial members 

and the second term is that done by flexural members. 

 

Again considering only axial and bending members, if a deflection is sought: 

 

0

1

i i i i

L
x

i x
i

y F e P M

PL My P M dx
EA EI

δ δ θ δ

δ δ

⋅ = ⋅ + ⋅

   ⋅ = ⋅ + ⋅      

∑ ∑

∑ ∑∫
 

 

To solve such an indeterminate structure, we have the contributions to Virtual Work: 

 

 0 1M M Mα= +  

 0 1P P Pα= +  

 

for the structure as a whole. Hence we have: 
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( ) ( )

( )

1

0

0 1 0 1
1

0

210 1 0 1
1 1

0

0

0 1

0

0

E I

i i i i i i

L
x

i x
i

L
x x

i x

i

L
xx x

i i
i i

W
W W

y F e P M

PL MP M dx
EA EI

P P L M M
P M dx

EA EI

MP L P L M MP P dx
EA EA EI

δ
δ δ

δ δ θ δ

δ δ

α δ α
δ δ

δδ δδ α δ α

=
=

⋅ = ⋅ + ⋅

   ⋅ = ⋅ + ⋅      

   + ⋅ +
 = ⋅ + ⋅ 
      

    ⋅
= ⋅ + ⋅ ⋅ + + ⋅   

   

∑ ∑ ∑

∑ ∑∫

∑ ∑∫

∑ ∑ ∑∫
0

L

dx
EI∑∫

 

Hence the multiplier can be found as: 

 

( ) ( )

0 1 0 1

0
2 21 1

0

L
i i i

i i

L
i i i

i i

P P L M M dx
EA EI

P L M
dx

EA EI

δ δ

α
δ δ

⋅ ⋅ ⋅+
= −

+

∑ ∑∫

∑ ∑∫
 

 

Note the negative sign! 

 

Though these expressions are cumbersome, the ideas and the algebra are both simple. 

 

Integration of Diagrams 

We are often faced with the integration of various diagrams when using virtual work 

to calculate the deflections, etc. As such diagrams only have a limited number of 

shapes, a table of ‘volume’ integrals is used. 
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2.3 Basic Examples 

2.3.1 Example 1 

Problem 

For the following structure, find: 

(a) The force in the cable BC and the bending moment diagram; 

(b) The vertical deflection at D. 

Take 3 28 10 kNmEI = ×  and 316 10  kNEA = × . 
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Solution – Part (a) 

This is a one degree indeterminate structure and so we must release one redundant. 

We could choose many, but the most obvious is the cable, BC. We next analyze the 

primary structure for the actual loads, and the unit virtual force placed in lieu of the 

redundant: 

 

 
 

From the derivation of Virtual Work for indeterminate structures, we have: 

 

 
( )210 1 0 1

1 1

0 0

0
L L

xx x
i i

i i

MP L P L M MP P dx dx
EA EA EI EI

δδ δδ α δ α
    ⋅

= ⋅ + ⋅ ⋅ + + ⋅   
   

∑ ∑ ∑ ∑∫ ∫  

 

We evaluate each term separately to simplify the calculations and to minimize 

potential calculation error. 
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Term 1: 

This term is zero since 0P  is zero. 

 

Term 2: 

Only member BC contributes to this term and so it is: 

 

 
1

1 1 2 21i
i

P L P
EA EA EA
δ δ
  ⋅

⋅ = ⋅ = 
 

∑  

 

Term 3: 

Here we must integrate the bending moment diagrams. We use the volume integral 

for the portion AD of both diagrams. Thus we multiply a triangle by a trapezoid: 

 

 
( ) ( )( )( )

0 1

0

1 1 40 2 2 4 2
6

400 3

L
x xM M dx
EI EI

EI

δ⋅  = − + −  

= −

∑∫
 

 

Term 4: 

Here we multiply the virtual BMD by itself so it is a triangle by a triangle: 

 

 
( ) ( )( )( )

21

0

1 1 64 34 4 4
3

L
xM

dx
EI EI EI

δ  = − − =  
∑∫  

 

With all terms evaluated the Virtual Work equation becomes: 

 

 2 400 3 64 30 0
EA EI EI

α α= + ⋅ − + ⋅  
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Which gives: 

 

 

400 3
400

2 64 3 6 64
EI

EI
EA EI EA

α = =
+ +

 

 

Given that 3 38 10 16 10 0.5EI EA = × × = , we have: 

 

 
( )

400 5.97
6 0.5 64

α = =
+

 

 

Thus there is a tension (positive answer) in the cable of 5.97 kN, giving the BMD as: 

 

 
 

Note that this comes from: 

 

 
( )( )
( )( )

0

0

40 5.97 4 16.1 kN

0 5.97 2 11.9 kN
A

D

M M M

M M M

α δ

α δ

= + ⋅ = + − =

= + ⋅ = + − = −
 

 



Structural Analysis IV Chapter 2 – Virtual Work: Compound Structures 

Dr. C. Caprani 18 

Solution – Part (b) 

Recalling that the only requirement on applying virtual forces to calculate real 

displacements is that an equilibrium system results, we can apply a vertical unit force 

at D to the primary structure only: 

 

 
 

The Virtual Work equation useful for deflection is: 

 

 

0

1

i i i i

L
x

Dy i x
i

y F e P M

PL MP M dx
EA EI

δ δ θ δ

δ δ δ

⋅ = ⋅ + ⋅

   ⋅ = ⋅ + ⋅      

∑ ∑

∑ ∑∫
 

 

Since 0Pδ = , we need only calculate the term involving the Virtual Work done by 

the beam bending. This involves the volume integral of the two diagrams: 
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Note that only the portion AD will count as there is no virtual moment on DB. Thus 

we have: 

 

 
 

However, this shape is not easy to work with, given the table to hand. Therefore we 

recall that the real BMD came about as the superposition of two BMD shapes that are 

easier to work with, and so we have: 

 

 
 

A further benefit of this approach is that an equation of deflection in terms of the 

multiplier α  is got. This could then be used to determine α  for a particular design 

requirement, and in turn this could inform the choice of EI EA  ratio. Thus: 

 

 ( )( )( ) ( ) ( )( )( )

0

1 1 12 40 2 2 2 2 4 2
3 6

160 20
3

L
x

Dy x
M M dx
EI

EI

EI

δ δ

α

α

 = ⋅  

 = + ⋅ − + −  
−

=

∑∫
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Given 5.97α = , we then have: 

 

 ( ) 3
3

160 20 5.97 13.9 13.9 10 1.7 mm
3 8 10Dy EI EI

δ
−

= = = × =
×

 

 

The positive answer indicates that the deflection is in the direction of the applied 

virtual vertical force and so is downwards as expected. 

 

We can also easily work out the deflection at B, since it is the same as the elongation 

of the cable: 

 

 ( )( ) 3
3

5.97 2
10 0.75 mm

16 10By
PL
EA

δ = = × =
×

 

 

Draw the deflected shape of the structure. 
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2.3.2 Example 2 

Problem 

For the following structure, find: 

(a) The force in the cable CD and the bending moment diagram; 

(b) Determine the optimum EA of the cable for maximum efficiency of the beam. 

Take 3 28 10  kNmEI = ×  and 348 10  kNEA = × . 
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Solution – Part (a) 

Choose the cable CD as the redundant to give: 

 

 
 

The equation of Virtual Work relevant is: 

 

 
( )210 1 0 1

1 1

0 0

0
L L

xx x
i i

i i

MP L P L M MP P dx dx
EA EA EI EI

δδ δδ α δ α
    ⋅

= ⋅ + ⋅ ⋅ + + ⋅   
   

∑ ∑ ∑ ∑∫ ∫  

 

We evaluate each term separately: 
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Term 1: 

This term is zero since 0P  is zero. 

 

Term 2: 

Only member CD contributes to this term and so it is: 

 

 
1

1 1 2 21i
i

P L P
EA EA EA
δ δ
  ⋅

⋅ = ⋅ = 
 

∑  

 

Term 3: 

Here we must integrate the bending moment diagrams. We use the volume integral 

for each half of the diagram, and multiply by 2, since we have two such halves. 

 

 

 
( )( )( )

0 1

0

2 5 1 10 2
12

50 3

L
x xM M dx
EI EI

EI

δ⋅  = −  

= −

∑∫
 

 

 

 

Term 4: 

Here we multiply the virtual BMD by itself: 

 

 
( ) ( )( )( )

21

0

2 1 4 31 1 2
3

L
xM

dx
EI EI EI

δ  = − − =  
∑∫  

 

Thus the Virtual Work equation becomes: 
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 2 50 3 4 30 0
EA EI EI

α α= + ⋅ − + ⋅  

 

Which gives: 

 

 

50 3
50

2 4 3 6 4
EI

EI
EA EI EA

α = =
+ +

 

 

Given that 3 38 10 48 10 0.167EI EA = × × = , we have: 

 

 
( )

50 10
6 0.167 4

α = =
+

 

 

Thus there is a tension (positive answer) in the cable of 10 kN, giving: 
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As designers, we want to control the flow of forces. In this example we can see that 

by changing the ratio EI EA  we can control the force in the cable, and the resulting 

bending moments. We can plot the cable force and maximum sagging bending 

moment against the stiffness ratio to see the behaviour for different relative 

stiffnesses: 
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Solution – Part (b) 

Efficiency of the beam means that the moments are resisted by the smallest possible 

beam. Thus the largest moment anywhere in the beam must be made as small as 

possible. Therefore the hogging and sagging moments should be equal: 

 

 
 

We know that the largest hogging moment will occur at 2L . However, we do not 

know where the largest sagging moment will occur. Lastly, we will consider sagging 

moments positive and hogging moments negative. Consider the portion of the net 

bending moment diagram, ( )M x , from 0 to 2L : 

 

 
 

The equations of these bending moments are: 
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 ( )
2P

PM x x= −  

 ( ) 2

2 2W

w wLM x x x= − +  

 

Thus: 

 

 
( ) ( ) ( )

2

2 2 2

W PM x M x M x
wL w Px x x

= +

= − −
 

 

 
 

The moment at 2L  is: 

 

( )
2

2 2

2

2
2 2 2 2 2 2

4 8 4

8 4

wL L w L P LM L

wL wL PL

wL PL

     = − −     
     

= − −

= −

 

 

Which is as we expected. The maximum sagging moment between 0 and 2L  is 

found at: 
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( )

max

max

0

0
2 2

2 2

dM x
dx

wL Pwx

L Px
w

=

− − =

= −

 

 

Thus the maximum sagging moment has a value: 

 

 

( )
2

max

2 2 2 2

2 2

2 2 2 2 2 2 2 2 2
2

4 4 2 4 4 4 4 4

8 4 8

wL L P w L P P L PM x
w w w

wL PL w L PL P PL P
w w w

wL PL P
w

     = − − − − −     
     

 = − − − + − + 
 

= − +

 

 

Since we have assigned a sign convention, the sum of the hogging and sagging 

moments should be zero, if we are to achieve the optimum BMD. Thus: 

 

 

( ) ( )max

2 2 2

2 2

2
2

2 0

0
8 4 8 8 4

0
4 2 8

1 0
8 2 4

M x M L

wL PL P wL PL
w

wL PL P
w

L wLP P
w

+ =

   − + + − =      

− + =

    + − + =          

 

 

This is a quadratic equation in P and so we solve for P using the usual method: 
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( )

2 2

82 4 8
2 2 2 8

8
2 2

L L L
w L LP

w
wL

± −
 = = ± 
 

= ±

 

 

Since the load in the cable must be less than the total amount of load in the beam, that 

is, P wL< , we have: 

 

 ( )2 2 0.586P wL wL= − =  

 

With this value for P we can determine the hogging and sagging moments: 

 

 

( )
( )2

2

2

2 2
2

8 4
2 2 3

8

0.0214

wL LwLM L

wL

wL

−
= −

 −
=  

 
= −

 

 

And: 

 

 

( )

( )

2 2

max

2

2

2

2

8 4 8

2 22 2 3
8 8

3 2 2
8

0.0214

wL PL PM x
w

wL
wL

w

wL

wL

 = − + 
 

 − −  = + 
 
 −

=  
 

= +
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Lastly, the location of the maximum sagging moment is given by: 

 

 
( )

( )

max 2 2
2 2

2 2

2 1
2
0.207

L Px
w

wLL
w

L

L

= −

−
= −

= −

=

 

 

For our particular problem, 5 kN/mw = , 4 mL = , giving: 

 

 ( )0.586 5 4 11.72 kNP = × =  

 ( ) ( )2
max 0.0214 5 4 1.71 kNmM x = × =  

 

Thus, as we expected, 10 kNP > , the value obtained from Part (a) of the problem. 

 

Now since, we know P we now also know the required value of the multiplier, α . 

Hence, we write the virtual work equations again, but this time keeping Term 2 in 

terms of L, since that is what we wish to solve for: 

 

 

50 11.72
6 4

1 50 4 0.044
6 11.72

EI
EA

EI
EA

α = =
+

 ∴ = − = 
 

 

 

Giving 3 38 10 0.044 180.3 10  kNEA = × = × . This is 3.75 times the original cable area 

– a lot of extra material just to change the cable force by 17%. However, there is a 
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large saving by reducing the overall moment in the beam from 10 kNm (simply-

supported) or 2.5 kNm (two-span beam) to 1.71 kNm. 
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2.3.3 Example 3 

Problem 

For the following structure: 

1. Determine the tension in the cable AB; 

2. Draw the bending moment diagram; 

3. Determine the vertical deflection at D with and without the cable AB. 

Take 3 2120 10  kNmEI = ×  and 360 10  kNEA = × . 

 

 
  



Structural Analysis IV Chapter 2 – Virtual Work: Compound Structures 

Dr. C. Caprani 33 

Solution 

As is usual, we choose the cable to be the redundant member and split the frame up 

as follows: 

 

     
Primary Structure    Redundant Structure 

We must examine the BMDs carefully, and identify expressions for the moments 

around the arch. However, since we will be using virtual work and integrating one 

diagram against another, we immediately see that we are only interested in the 

portion of the structure CB. Further, we will use the anti-clockwise angle from 

vertical as the basis for our integration. 

 

Primary BMD 

Drawing the BMD and identify the relevant distances: 
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Hence the expression for 0M  is: 

 

 ( ) ( )0 20 10 2sin 20 1 sinMθ θ θ= + = +  

 

 

 

 

Reactant BMD 

This calculation is slightly easier: 
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 ( ) ( )1 1 2 2cos 2 1 cosMθ θ θ= ⋅ − = −  

 

Virtual Work Equation 

As before, we have the equation: 

 

( )210 1 0 1
1 1

0 0

0
L L

xx x
i i

i i

MP L P L M MP P dx dx
EA EA EI EI

δδ δδ α δ α
    ⋅

= ⋅ + ⋅ ⋅ + + ⋅   
   

∑ ∑ ∑ ∑∫ ∫  

 

Term 1 is zero since there are no axial forces in the primary structure. We take each 

other term in turn. 

 

Term 2 

Since only member AB has axial force: 

 

 ( )21 2 2Term 2
EA EA

= =  

Term 3 
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Since we want to integrate around the member – an integrand ds  - but only have the 

moment expressed according to θ , we must change the integration limits by 

substituting: 

 

 2ds R d dθ θ= ⋅ =  

 

Hence: 

 

 

( ) ( )

( )( )

( )

20 1

0 0

2

0

2

0

1 2 1 cos 20 1 sin 2

80 1 cos 1 sin

80 1 sin cos cos sin

L
x xM M dx d
EI EI

d
EI

d
EI

π

π

π

δ θ θ θ

θ θ θ

θ θ θ θ θ

⋅
= − − +      

= − + +

= − − + +

∑∫ ∫

∫

∫

 

 

To integrate this expression we refer to the appendix of integrals to get each of the 

terms, which then give: 

 

 

 
( )

20 1

00

80 1cos sin cos2
4

80 1 10 1 1 0 1 0
2 4 4

80 1 11 1
2 4 4

80 1
2

L
x xM M dx
EI EI

EI

EI

EI

πδ θ θ θ θ

π

π

π

⋅  = − + + −  

    = − + + − − − − + + −        
 = − + + − + 
 
− =  

 

∑∫

 

 

Term 4 
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Proceeding similarly to Term 3, we have: 

 

 

( ) ( ) ( )

( )

21 2

0 0

2
2

0

1 2 1 cos 2 1 cos 2

8 1 2cos cos

L
xM

dx d
EI EI

d
EI

π

π

δ
θ θ θ

θ θ θ

= − −      

= − +

∑∫ ∫

∫
 

 

Again we refer to the integrals appendix, and so for Term 4 we then have: 

 

 

( ) ( )

[ ]

21 2
2

0 0

2

0

8 1 2cos cos

8 12sin sin 2
2 4

8 12 0 0 0 0
2 4 4

8 3 7
4

L
xM

dx d
EI EI

EI

EI

EI

π

π

δ
θ θ θ

θθ θ θ

π π

π

= − +

  = − + +    

   = − + + − − + +      
− =  

 

∑∫ ∫

 

 

Solution 

Substituting the calculated values into the virtual work equation gives: 

 

2 80 1 8 3 70 0
2 4EA EI EI
π πα α− −   = + ⋅ + + ⋅   

   
 

 

And so: 
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80 1
2

2 8 3 7
4

EI

EA EI

π

α
π

− −  
 =

− +  
 

 

 

Simplifying: 

 

20 20

3 7 EI
EA

πα
π

−
=

− +
 

 

In this problem, 2EI EA =  and so: 

 

20 20 9.68 kN
3 5
πα
π
−

= =
−

 

 

We can examine the effect of different ratios of EI EA  on the structure from our 

algebraic solution for α . We show this, as well as a point representing the solution 

for this particular EI EA  ratio on the following graph: 
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As can be seen, by choosing a stiffer frame member (increasing EI) or by reducing 

the area of the cable, we can reduce the force in the cable (which is just 1 α⋅ ). 

However this will have the effect of increasing the moment at A, for example: 

 

 
Deflections and shear would also be affected. 

 

Draw the final BMD and determine the deflection at D. 
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2.3.4 Example 4 

Problem 

For the following structure: 

1. draw the bending moment diagram; 

2. Find the vertical deflection at E. 

Take 3 2120 10  kNmEI = ×  and 360 10  kNEA = × . 
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Solution 

To begin we choose the cable BF as the obvious redundant, yielding: 

 

 
 

Virtual Work Equation 

The Virtual Work equation is as before: 

 

( )210 1 0 1
1 1

0 0

0
L L

xx x
i i

i i

MP L P L M MP P dx dx
EA EA EI EI

δδ δδ α δ α
    ⋅

= ⋅ + ⋅ ⋅ + + ⋅   
   

∑ ∑ ∑ ∑∫ ∫  

 

Term 1 is zero since there are no axial forces in the primary structure. As we have 

done previously, we take each other term in turn. 

 

Term 2 
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Though member AB has axial force, it is primarily a flexural member and so we only 

take account of the axial force in the cable BF: 

 

 
1

1 1 2 2 2 21i
i

P L P
EA EA EA
δ δ

 ⋅  ⋅ = ⋅ =  
   

∑  

 

Term 3 

Since only the portion AB has moment on both diagrams, it is the only section that 

requires integration here. Thus: 

 

 ( )( )( )
0 1

0

1 1 220 2200 2 2
2

L
x xM M dx
EI EI EI
δ⋅ − = − =  

∑∫  

 

Term 3 

Similar to Term 3, we have: 

 

 
( ) ( )( )( )

21

0

1 1 4 32 2 2
3

L
xM

dx
EI EI EI

δ  = − − =  
∑∫  

 

Solution 

Substituting the calculated values into the virtual work equation gives: 

 

2 2 220 2 4 30 0
EA EI EI

α α= + ⋅ − + ⋅  

 

Thus: 
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220 2
2 2 4 3

EI

EA EI

α =
+

 

 

And so: 

 

220 2
42 2
3

EI
EA

α =
+

 

 

Since: 

 

 
3

3

120 10 2
60 10

EI
EA

×
= =

×
 

 

We have: 

 

( )
220 2 40.4642 2 2

3

α = = +
+

 

 

Thus the force in the cable BF is 40.46 kN tension, as assumed. 

 

The bending moment diagram follows from superposition of the two previous 

diagrams:  
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To find the vertical deflection at E, we must apply a unit vertical load at E. We will 

apply a downwards load since we think the deflection is downwards. Therefore we 

should get a positive result to confirm our expectation. 

 

We need not apply the unit vertical force to the whole structure, as it is sufficient to 

apply it to a statically determinate sub-structure. Thus we apply the force as follows: 

 

 
For the deflection, we have the following equation: 
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0

1

i i i i

L
x

Ey i x
i

y F e P M

PL MP M dx
EA EI

δ δ θ δ

δ δ δ

⋅ = ⋅ + ⋅

   ⋅ = ⋅ + ⋅      

∑ ∑

∑ ∑∫
 

 

However, since 0Pδ = , we only need calculate the second term: 

 

 
 

For AB we have: 

 

 ( )( )( )1 1 1371.2200 142.8 4 2
2

B
x

x
A

M M dx
EI EI EI

δ   ⋅ = + =      ∫  

 

For BC we have: 

 

 ( )( )( )1 1600200 4 2
C

x
x

B

M M dx
EI EI EI

δ  ⋅ = =    ∫  

 

 

For CD, we have the following equations for the bending moments: 
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( ) ( )( )100 2sin
200sin

M θ θ
θ

=

=
    ( ) ( )( )2 1 2sin

2 2sin
Mδ θ θ

θ
= +

= +
 

 

Also note that we want to integrate around the member – an integrand ds  - but only 

have the moment expressed according to θ , we must change the integration limits by 

substituting: 

 

 2ds R d dθ θ= ⋅ =  

 

Thus we have: 

 

 

( )( )

( )

2

0

2
2

0

2 2
2

0 0

1 200sin 2 2sin 2

800 sin sin

800 sin sin

D
x

x
C

M M dx d
EI EI

d
EI

d d
EI

π

π

π π

δ θ θ θ

θ θ θ

θ θ θ θ

  ⋅ = + ⋅  

= +

 
= + 

 

∫ ∫

∫

∫ ∫

 

 

Taking each term in turn: 
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 [ ] ( )
2

2

0
0

sin cos 0 1 1d
π

πθ θ θ= − = − − − = +∫  

 

 ( ) ( )
22

2 22 2

00

1 1 1 1sin sin 1 0 0
2 4 4 4 4 4

d
ππ θ π πθ θ θ −     = − = − − − =          ∫  

 

Thus: 

 

 800 1 200 6001
4

D
x

x
C

M M dx
EI EI EI

π πδ − +   ⋅ = + =     ∫  

 

Thus: 

 

 1371.2 1600 200 600 4200
Ey EI EI EI EI

πδ +
= + + = +  

 

Thus we get a downwards deflection as expected. Also, since 3 2120 10  kNmEI = × , 

we have: 

 

 3

4200 35 mm
120 10Eyδ = = ↓

×
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2.3.5 Problems 

Problem 1 

For the following structure, find the BMD and the vertical deflection at D. Take 
3 28 10 kNmEI = ×  and 316 10  kNEA = × . 

(Ans. 7.8α =  for BC, 1.93 mmByδ = ↓ ) 

 

 
 

Problem 2 

For the following structure, find the BMD and the vertical deflection at C. Take 
3 28 10 kNmEI = ×  and 316 10  kNEA = × . 

(Ans. 25.7α =  for BD, 25 mmCvδ = ↓ ) 
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Problem 3 

For the following structure, find the BMD and the horizontal deflection at C. Take 
3 28 10 kNmEI = ×  and 316 10  kNEA = × . 

(Ans. 47.8α =  for BD, 44.8 mmCxδ = → ) 

 

 

Problem 4 

For the following structure, find the BMD and the vertical deflection at B. Take P = 

20 kN, 3 28 10 kNmEI = ×  and 316 10  kNEA = × . 
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(Ans. 14.8α =  for CD, 14.7 mmByδ = ↓ ) 

 

 

Problem 5 

For the following structure, find the BMD and the vertical deflection at C. Take 
3 250 10 kNmEI = ×  and 320 10  kNEA = × . 

(Ans. 100.5α =  for BC, 55.6 mmCyδ = ↓) 

 

 
 

Problem 6 

Analyze the following structure and determine the BMD and the vertical deflection at 

D. For ABCD, take 210 kN/mmE = , 4 212 10  mmA = ×  and 8 436 10  mmI = × , and for 

AEBFC take 2200 kN/mmE =  and 3 22 10  mmA = × . 

(Ans. 109.3α =  for BF, 54.4 mmCyδ = ↓) 
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Problem 7 

Analyze the following structure. For all members, take 210 kN/mmE = , for ABC,  
4 26 10  mmA = ×  and 7 4125 10  mmI = × ; for all other members 21000 mmA = . 

(Ans. 72.5α =  for DE) 
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2.4 Past Exam Questions 

2.4.1 Sample Paper 2007 

 
3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work: 
 

(i) Determine the bending moment moments due to the loads as shown; 
(15 marks) 

 
(ii) Draw the bending moment diagram, showing all important values; 

(4 marks) 
 

(iii) Determine the reactions at A and E; 
(3 marks) 

 
(iv) Draw the deflected shape of the frame. 

(3 marks) 
 
Neglect axial effects in the flexural members. 
Take the following values: 
I for the frame = 150×106 mm4; 
Area of the stay EB = 100 mm2; 
Take E = 200 kN/mm2 for all members. 

 
 

 
 

FIG. Q3
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2.4.2 Semester 1 Exam 2007 

 
3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work: 
 

(i) Determine the bending moment moments due to the loads as shown; 
(15 marks) 

 
(ii) Draw the bending moment diagram, showing all important values; 

(4 marks) 
 

(iii) Determine the reactions at A and E; 
(3 marks) 

 
(iv) Draw the deflected shape of the frame. 

(3 marks) 
 
Neglect axial effects in the flexural members. 
Take the following values: 
I for the frame = 150×106 mm4; 
Area of the stay EF = 200 mm2; 
Take E = 200 kN/mm2 for all members. 

 
 

 
 

Ans. 35.0α = . 

FIG. Q3
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2.4.3 Semester 1 Exam 2008 
 

QUESTION 3 

 

For the frame shown in Fig. Q3, using Virtual Work: 

(i) Determine the force in the tie; 
(ii) Draw the bending moment diagram, showing all important values; 
(iii) Determine the deflection at C; 
(iv) Determine an area of the tie such that the bending moments in the beam are minimized; 
(v) For this new area of tie, determine the deflection at C; 
(vi) Draw the deflected shape of the structure. 

 

(25 marks) 

 

Note: 

Neglect axial effects in the flexural members and take the following values: 

• For the frame, 6 4600 10  mmI = × ; 
• For the tie, 2300 mmA = ; 
• For all members, 2200 kN/mmE = . 

 

 

 

Ans. 21.24α = ; 4.1 mmCyδ = ↓ ; 22160 mmA = ; 2.0 mmCyδ = ↓  
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2.4.4 Semester 1 Exam 2009 
 

QUESTION 3 

 

For the frame shown in Fig. Q3, using Virtual Work: 

 

(i) Determine the axial forces in the members; 
(ii) Draw the bending moment diagram, showing all important values; 
(iii) Determine the reactions; 
(iv) Determine the vertical deflection at D; 
(v) Draw the deflected shape of the structure. 

 

(25 marks) 

 

Note: 

Neglect axial effects in the flexural members and take the following values: 

• For the beam ABCD, 6 4600 10  mmI = × ; 
• For members BF and CE, 2300 mmA = ; 
• For all members, 2200 kN/mmE = . 

 

 
Ans. 113.7α =  (for CE); 55 mmDyδ = ↓  
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2.4.5 Semester 1 Exam 2010 
 
QUESTION 3 
 
For the frame shown in Fig. Q3, using Virtual Work: 
 

(i) Draw the bending moment diagram, showing all important values; 
 

(ii) Determine the horizontal displacement at C; 
 

(iii) Determine the vertical deflection at C; 
 

(iv) Draw the deflected shape of the structure. 
 

(25 marks) 
 
Note: 
Neglect axial effects in the flexural members and take the following values: 

• For the beam ABC, 3 25 10  kNmEI = × ; 
• For member BD, 2200 kN/mmE =  and 2200 mmA = ; 
• The following integral results may assist in your solution: 

 

sin cosdθ θ θ= −∫   1cos sin cos 2
4

dθ θ θ θ= −∫  2 1sin sin 2
2 4

d θθ θ θ= −∫  

 

 
 

Ans. 37.1α =  (for BD); 104 mmCxδ = ← 83 mmCyδ = ↓  
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2.4.6 Semester 1 Exam 2011 
 
QUESTION 3 
 
For the frame shown in Fig. Q3, using Virtual Work: 
(i) Draw the bending moment diagram, showing all important values; 
(ii) Draw the axial force diagram; 
(iii) Determine the vertical deflection at D; 
(iv) Draw the deflected shape of the structure. 

(25 marks) 
 
Note: 
Neglect axial effects in the flexural members and take the following values: 

• For the member ABCD, 3 25 10  kNmEI = × ; 
• For members BF and CE, 2200 kN/mmE =  and 2200 mmA = ; 
• The following integral result may assist in your solution: 

 
2 1sin sin 2

2 4
d θθ θ θ= −∫  

 

 
Ans. 48.63α =  (for BF); 108.4 mmDyδ = ↓  
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2.5 Appendix – Trigonometric Integrals 

2.5.1 Useful Identities 

In the following derivations, use is made of the trigonometric identities: 

 

 1cos sin sin 2
2

θ θ θ=   (1) 

 

 ( )2 1cos 1 cos2
2

θ θ= +  (2) 

 

 ( )2 1sin 1 cos2
2

θ θ= −  (3) 

 

Integration by parts is also used: 

 

 u dx ux x du C= − +∫ ∫  (4) 
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2.5.2 Basic Results 

Neglecting the constant of integration, some useful results are: 

 

 cos sindθ θ θ=∫  (5) 

 

 sin cosdθ θ θ= −∫  (6) 

 

 1sin cosa d a
a

θ θ θ= −∫  (7) 

 

 1cos sina d a
a

θ θ θ=∫  (8) 
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2.5.3 Common Integrals 

The more involved integrals commonly appearing in structural analysis problems are: 

 

cos sin dθ θ θ∫  

Using identity (1) gives: 

 

 1cos sin sin 2
2

d dθ θ θ θ θ=∫ ∫  

 

Next using (7), we have: 

 

 

1 1 1sin 2 cos2
2 2 2

1 cos2
4

dθ θ θ

θ

 = −  

= −

∫
 

 

And so: 

 

 1cos sin cos2
4

dθ θ θ θ= −∫  (9) 
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2cos dθ θ∫  

Using (2), we have: 

 

 
( )2 1cos 1 cos2

2
1 1 cos2
2

d d

d d

θ θ θ θ

θ θ θ

= +

 = + 

∫ ∫

∫ ∫
 

 

Next using (8): 

 

 

1 1 11 cos2 sin 2
2 2 2

1 sin 2
2 4

d dθ θ θ θ θ

θ θ

  + = +    

= +

∫ ∫
 

 

And so: 

 

 2 1cos sin 2
2 4

d θθ θ θ= +∫  (10) 
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2sin dθ θ∫  

Using (3), we have: 

 

 
( )2 1sin 1 cos2

2
1 1 cos2
2

d d

d d

θ θ θ θ

θ θ θ

= −

 = − 

∫ ∫

∫ ∫
 

 

Next using (8): 

 

 

1 1 11 cos2 sin 2
2 2 2

1 sin 2
2 4

d dθ θ θ θ θ

θ θ

  − = −    

= −

∫ ∫
 

 

And so: 

 

 2 1sin sin 2
2 4

d θθ θ θ= −∫  (11) 
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cos dθ θ θ∫  

Using integration by parts write: 

 

 cos d u dxθ θ θ =∫ ∫  

 

Where: 

 

 cosu dx dθ θ θ= =  

 

To give: 

 

 du dθ=  

 

And 

 

 cos

sin

dx d

x

θ θ

θ

=

=
∫ ∫  

 

Which uses (5). Thus, from (4), we have: 

 

 
cos sin sin

u dx ux x du

d dθ θ θ θ θ θ θ

= −

= −
∫ ∫

∫ ∫
 

 

And so, using (6) we have: 

 

 cos sin cosdθ θ θ θ θ θ= +∫  (12) 
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sin dθ θ θ∫  

Using integration by parts write: 

 

 sin d u dxθ θ θ =∫ ∫  

 

Where: 

 

 sinu dx dθ θ θ= =  

 

To give: 

 

 du dθ=  

 

And 

 

 sin

cos

dx d

x

θ θ

θ

=

= −
∫ ∫  

 

Which uses (6). Thus, from (4), we have: 

 

 
( ) ( )sin cos cos

u dx ux x du

d dθ θ θ θ θ θ θ

= −

= − − −
∫ ∫

∫ ∫
 

 

And so, using (5) we have: 

 

 sin cos sindθ θ θ θ θ θ= − +∫  (13) 
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( )cos A dθ θ−∫  

Using integration by substitution, we write u A θ= −  to give: 

 

 1du
d
du d
θ

θ

= −

= −
 

 

Thus: 

 

 ( ) ( )cos cosA d u duθ θ− = −∫ ∫  

 

And since, using (5): 

 

 cos sinu du u− = −∫  

 

We have: 

 

 ( ) ( )cos sinA d Aθ θ θ− = − −∫  (14) 
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( )sin A dθ θ−∫  

Using integration by substitution, we write u A θ= −  to give: 

 

 1du
d
du d
θ

θ

= −

= −
 

 

Thus: 

 

 ( ) ( )sin sinA d u duθ θ− = −∫ ∫  

 

And since, using (6): 

 

 ( )sin cosu du u− = − −∫  

 

We have: 

 

 ( ) ( )sin cosA d Aθ θ θ− = −∫  (15) 
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2.6 Appendix – Volume Integrals 
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	Rev. 1
	2.1 Introduction
	2.1.1 Purpose


	Previously we only used virtual work to analyse structures whose members primarily behaved in flexure or in axial forces. Many real structures are comprised of a mixture of such members. Cable-stay and suspension bridges area good examples: the deck-level carries load primarily through bending whilst the cable and pylon elements carry load through axial forces mainly. A simple example is a trussed beam:
	/
	Other structures carry load through a mixture of bending, axial force, torsion, etc. Our knowledge of virtual work to-date is sufficient to analyse such structures.
	2.2 Virtual Work Development
	2.2.1 The Principle of Virtual Work


	This states that:
	A body is in equilibrium if, and only if, the virtual work of all forces acting on the body is zero.
	In this context, the word ‘virtual’ means ‘having the effect of, but not the actual form of, what is specified’.
	There are two ways to define virtual work, as follows.
	1. Virtual Displacement: 
	Virtual work is the work done by the actual forces acting on the body moving through a virtual displacement.
	2. Virtual Force: 
	Virtual work is the work done by a virtual force acting on the body moving through the actual displacements.
	Virtual Displacements

	A virtual displacement is a displacement that is only imagined to occur:
	 virtual displacements must be small enough such that the force directions are maintained.
	 virtual displacements within a body must be geometrically compatible with the original structure. That is, geometrical constraints (i.e. supports) and member continuity must be maintained. 
	Virtual Forces

	A virtual force is a force imagined to be applied and is then moved through the actual deformations of the body, thus causing virtual work.
	Virtual forces must form an equilibrium set of their own.
	Internal and External Virtual Work

	When a structures deforms, work is done both by the applied loads moving through a displacement, as well as by the increase in strain energy in the structure. Thus when virtual displacements or forces are causing virtual work, we have:
	 where
	 Virtual work is denoted  and is zero for a body in equilibrium;
	 External virtual work is , and;
	 Internal virtual work is .
	And so the external virtual work must equal the internal virtual work. It is in this form that the Principle of Virtual Work finds most use.
	Application of Virtual Displacements

	For a virtual displacement we have:
	In which, for the external virtual work,  represents an externally applied force (or moment) and  its virtual displacement. And for the internal virtual work,  represents the internal force (or moment) in member i and  its virtual deformation. The summations reflect the fact that all work done must be accounted for. 
	Remember in the above, each the displacements must be compatible and the forces must be in equilibrium, summarized as:
	/
	Application of Virtual Forces

	When virtual forces are applied, we have:
	And again note that we have an equilibrium set of forces and a compatible set of displacements:
	/
	In this case the displacements are the real displacements that occur when the structure is in equilibrium and the virtual forces are any set of arbitrary forces that are in equilibrium.
	2.2.2 Virtual Work for Deflections
	Deflections in Beams and Frames


	For a beam we proceed as:
	1. Write the virtual work equation for bending:
	2. Place a unit load, , at the point at which deflection is required;
	3. Find the real bending moment diagram, , since the real curvatures are given by:
	4. Solve for the virtual bending moment diagram (the virtual force equilibrium set), , caused by the virtual unit load.
	5. Solve the virtual work equation:
	6. Note that the integration tables can be used for this step.
	2.2.3 Virtual Work for Indeterminate Structures
	General Approach


	Using compatibility of displacement, we have:
	/
	    Final       =    Primary            +                  Reactant
	Next, further break up the reactant structure, using linear superposition:
	/
	Reactant        =    Multiplier     ×    Unit Reactant
	We summarize this process as:
	 M is the force system in the original structure (in this case moments);
	  is the primary structure force system;
	  is the unit reactant structure force system.
	The primary structure can be analysed, as can the unit reactant structure. Thus, the only unknown is the multiplier, , for which we use virtual work to calculate.
	Finding the Multiplier

	For beams and frames, we have:
	Thus:
	2.2.4 Virtual Work for Compound Structures
	Basis


	In the general equation for Virtual Work:
	We note that the summation on the right hand side is over all forms of real displacement and virtual force combinations. For example, if a member is in combined bending and axial force, then we must include the work done by both effects:
	The total Virtual Work done by any member is:
	In which Virtual Work done by axial, bending, torsion, and shear, respectively, is accounted for. However, most members primarily act through only one of these stress resultants, and so we commonly have only one term per member. A typical example is when axial deformation of frame (bending) members is neglected; since the area is large the contribution to virtual work is small.
	At the level of the structure as a whole, we must account for all such sources of Virtual Work. For the typical structures we study here, we account for the Virtual Work done by axial and flexural members separately:
	In which the first term on the RHS is the internal virtual work done by axial members and the second term is that done by flexural members.
	Again considering only axial and bending members, if a deflection is sought:
	To solve such an indeterminate structure, we have the contributions to Virtual Work:
	for the structure as a whole. Hence we have:
	Hence the multiplier can be found as:
	Note the negative sign!
	Though these expressions are cumbersome, the ideas and the algebra are both simple.
	Integration of Diagrams

	We are often faced with the integration of various diagrams when using virtual work to calculate the deflections, etc. As such diagrams only have a limited number of shapes, a table of ‘volume’ integrals is used.
	2.3 Basic Examples
	2.3.1 Example 1
	Problem



	For the following structure, find:
	(a) The force in the cable BC and the bending moment diagram;
	(b) The vertical deflection at D.
	Take  and .
	/
	Solution – Part (a)

	This is a one degree indeterminate structure and so we must release one redundant. We could choose many, but the most obvious is the cable, BC. We next analyze the primary structure for the actual loads, and the unit virtual force placed in lieu of the redundant:
	/
	From the derivation of Virtual Work for indeterminate structures, we have:
	We evaluate each term separately to simplify the calculations and to minimize potential calculation error.
	Term 1:
	This term is zero since  is zero.
	Term 2:
	Only member BC contributes to this term and so it is:
	Term 3:
	Here we must integrate the bending moment diagrams. We use the volume integral for the portion AD of both diagrams. Thus we multiply a triangle by a trapezoid:
	Term 4:
	Here we multiply the virtual BMD by itself so it is a triangle by a triangle:
	With all terms evaluated the Virtual Work equation becomes:
	Which gives:
	Given that , we have:
	Thus there is a tension (positive answer) in the cable of 5.97 kN, giving the BMD as:
	/
	Note that this comes from:
	Solution – Part (b)

	Recalling that the only requirement on applying virtual forces to calculate real displacements is that an equilibrium system results, we can apply a vertical unit force at D to the primary structure only:
	/
	The Virtual Work equation useful for deflection is:
	Since , we need only calculate the term involving the Virtual Work done by the beam bending. This involves the volume integral of the two diagrams:
	/
	Note that only the portion AD will count as there is no virtual moment on DB. Thus we have:
	/
	However, this shape is not easy to work with, given the table to hand. Therefore we recall that the real BMD came about as the superposition of two BMD shapes that are easier to work with, and so we have:
	/
	A further benefit of this approach is that an equation of deflection in terms of the multiplier  is got. This could then be used to determine  for a particular design requirement, and in turn this could inform the choice of  ratio. Thus:
	Given , we then have:
	The positive answer indicates that the deflection is in the direction of the applied virtual vertical force and so is downwards as expected.
	We can also easily work out the deflection at B, since it is the same as the elongation of the cable:
	Draw the deflected shape of the structure.
	2.3.2 Example 2
	Problem


	For the following structure, find:
	(a) The force in the cable CD and the bending moment diagram;
	(b) Determine the optimum EA of the cable for maximum efficiency of the beam.
	Take  and .
	/
	Solution – Part (a)

	Choose the cable CD as the redundant to give:
	/
	The equation of Virtual Work relevant is:
	We evaluate each term separately:
	Term 1:
	This term is zero since  is zero.
	Term 2:
	Only member CD contributes to this term and so it is:
	Term 3:
	Here we must integrate the bending moment diagrams. We use the volume integral for each half of the diagram, and multiply by 2, since we have two such halves.
	Term 4:
	Here we multiply the virtual BMD by itself:
	Thus the Virtual Work equation becomes:
	Which gives:
	Given that , we have:
	Thus there is a tension (positive answer) in the cable of 10 kN, giving:
	/
	As designers, we want to control the flow of forces. In this example we can see that by changing the ratio  we can control the force in the cable, and the resulting bending moments. We can plot the cable force and maximum sagging bending moment against the stiffness ratio to see the behaviour for different relative stiffnesses:
	/
	Solution – Part (b)

	Efficiency of the beam means that the moments are resisted by the smallest possible beam. Thus the largest moment anywhere in the beam must be made as small as possible. Therefore the hogging and sagging moments should be equal:
	/
	We know that the largest hogging moment will occur at . However, we do not know where the largest sagging moment will occur. Lastly, we will consider sagging moments positive and hogging moments negative. Consider the portion of the net bending moment diagram, , from 0 to :
	/
	The equations of these bending moments are:
	Thus:
	/
	The moment at  is:
	Which is as we expected. The maximum sagging moment between 0 and  is found at:
	Thus the maximum sagging moment has a value:
	Since we have assigned a sign convention, the sum of the hogging and sagging moments should be zero, if we are to achieve the optimum BMD. Thus:
	This is a quadratic equation in P and so we solve for P using the usual method:
	Since the load in the cable must be less than the total amount of load in the beam, that is, , we have:
	With this value for P we can determine the hogging and sagging moments:
	And:
	Lastly, the location of the maximum sagging moment is given by:
	For our particular problem, , , giving:
	Thus, as we expected, , the value obtained from Part (a) of the problem.
	Now since, we know P we now also know the required value of the multiplier, . Hence, we write the virtual work equations again, but this time keeping Term 2 in terms of L, since that is what we wish to solve for:
	Giving . This is 3.75 times the original cable area – a lot of extra material just to change the cable force by 17%. However, there is a large saving by reducing the overall moment in the beam from 10 kNm (simply-supported) or 2.5 kNm (two-span beam) to 1.71 kNm.
	/
	2.3.3 Example 3
	Problem


	For the following structure:
	1. Determine the tension in the cable AB;
	2. Draw the bending moment diagram;
	3. Determine the vertical deflection at D with and without the cable AB.
	Take  and .
	/
	Solution

	As is usual, we choose the cable to be the redundant member and split the frame up as follows:
	/    /
	Primary Structure    Redundant Structure
	We must examine the BMDs carefully, and identify expressions for the moments around the arch. However, since we will be using virtual work and integrating one diagram against another, we immediately see that we are only interested in the portion of the structure CB. Further, we will use the anti-clockwise angle from vertical as the basis for our integration.
	Primary BMD
	Drawing the BMD and identify the relevant distances:
	/
	Hence the expression for  is:
	Reactant BMD
	This calculation is slightly easier:
	/
	Virtual Work Equation
	As before, we have the equation:
	Term 1 is zero since there are no axial forces in the primary structure. We take each other term in turn.
	Term 2
	Since only member AB has axial force:
	Term 3
	Since we want to integrate around the member – an integrand  - but only have the moment expressed according to , we must change the integration limits by substituting:
	Hence:
	To integrate this expression we refer to the appendix of integrals to get each of the terms, which then give:
	Term 4
	Proceeding similarly to Term 3, we have:
	Again we refer to the integrals appendix, and so for Term 4 we then have:
	Solution
	Substituting the calculated values into the virtual work equation gives:
	And so:
	Simplifying:
	In this problem,  and so:
	We can examine the effect of different ratios of  on the structure from our algebraic solution for . We show this, as well as a point representing the solution for this particular  ratio on the following graph:
	/
	As can be seen, by choosing a stiffer frame member (increasing EI) or by reducing the area of the cable, we can reduce the force in the cable (which is just ). However this will have the effect of increasing the moment at A, for example:
	/
	Deflections and shear would also be affected.
	Draw the final BMD and determine the deflection at D.
	2.3.4 Example 4
	Problem


	For the following structure:
	1. draw the bending moment diagram;
	2. Find the vertical deflection at E.
	Take  and .
	/
	Solution

	To begin we choose the cable BF as the obvious redundant, yielding:
	/
	Virtual Work Equation
	The Virtual Work equation is as before:
	Term 1 is zero since there are no axial forces in the primary structure. As we have done previously, we take each other term in turn.
	Term 2
	Though member AB has axial force, it is primarily a flexural member and so we only take account of the axial force in the cable BF:
	Term 3
	Since only the portion AB has moment on both diagrams, it is the only section that requires integration here. Thus:
	Term 3
	Similar to Term 3, we have:
	Solution
	Substituting the calculated values into the virtual work equation gives:
	Thus:
	And so:
	Since:
	We have:
	Thus the force in the cable BF is 40.46 kN tension, as assumed.
	The bending moment diagram follows from superposition of the two previous diagrams: 
	/
	To find the vertical deflection at E, we must apply a unit vertical load at E. We will apply a downwards load since we think the deflection is downwards. Therefore we should get a positive result to confirm our expectation.
	We need not apply the unit vertical force to the whole structure, as it is sufficient to apply it to a statically determinate sub-structure. Thus we apply the force as follows:
	/
	For the deflection, we have the following equation:
	However, since , we only need calculate the second term:
	/
	For AB we have:
	For BC we have:
	For CD, we have the following equations for the bending moments:
	/
	Also note that we want to integrate around the member – an integrand  - but only have the moment expressed according to , we must change the integration limits by substituting:
	Thus we have:
	Taking each term in turn:
	Thus:
	Thus:
	Thus we get a downwards deflection as expected. Also, since , we have:
	2.3.5 Problems
	Problem 1


	For the following structure, find the BMD and the vertical deflection at D. Take  and .
	(Ans.  for BC, )
	/
	Problem 2

	For the following structure, find the BMD and the vertical deflection at C. Take  and .
	(Ans.  for BD, )
	/
	Problem 3

	For the following structure, find the BMD and the horizontal deflection at C. Take  and .
	(Ans.  for BD, )
	/
	Problem 4

	For the following structure, find the BMD and the vertical deflection at B. Take P = 20 kN,  and .
	(Ans.  for CD, )
	/
	Problem 5

	For the following structure, find the BMD and the vertical deflection at C. Take  and .
	(Ans.  for BC, )
	/
	Problem 6

	Analyze the following structure and determine the BMD and the vertical deflection at D. For ABCD, take ,  and , and for AEBFC take  and .
	(Ans.  for BF, )
	/
	Problem 7

	Analyze the following structure. For all members, take , for ABC,   and ; for all other members .
	(Ans.  for DE)
	/
	2.4 Past Exam Questions
	2.4.1 Sample Paper 2007


	3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work:
	(i) Determine the bending moment moments due to the loads as shown;
	(15 marks)
	(ii) Draw the bending moment diagram, showing all important values;
	(4 marks)
	(iii) Determine the reactions at A and E;
	(3 marks)
	(iv) Draw the deflected shape of the frame.
	(3 marks)
	Neglect axial effects in the flexural members.
	Take the following values:
	I for the frame = 150×106 mm4;
	Area of the stay EB = 100 mm2;
	Take E = 200 kN/mm2 for all members.
	2.4.2 Semester 1 Exam 2007

	3.  For the rigidly jointed frame shown in Fig. Q3, using Virtual Work:
	(i) Determine the bending moment moments due to the loads as shown;
	(15 marks)
	(ii) Draw the bending moment diagram, showing all important values;
	(4 marks)
	(iii) Determine the reactions at A and E;
	(3 marks)
	(iv) Draw the deflected shape of the frame.
	(3 marks)
	Neglect axial effects in the flexural members.
	Take the following values:
	I for the frame = 150×106 mm4;
	Area of the stay EF = 200 mm2;
	Take E = 200 kN/mm2 for all members.
	/
	Ans..
	2.4.3 Semester 1 Exam 2008

	QUESTION 3
	For the frame shown in Fig. Q3, using Virtual Work:
	(i) Determine the force in the tie;
	(ii) Draw the bending moment diagram, showing all important values;
	(iii) Determine the deflection at C;
	(iv) Determine an area of the tie such that the bending moments in the beam are minimized;
	(v) For this new area of tie, determine the deflection at C;
	(vi) Draw the deflected shape of the structure.
	(25 marks)
	Note:
	Neglect axial effects in the flexural members and take the following values:
	 For the frame, ;
	 For the tie, ;
	 For all members, .
	Ans.; ;; 
	2.4.4 Semester 1 Exam 2009

	QUESTION 3
	For the frame shown in Fig. Q3, using Virtual Work:
	(i) Determine the axial forces in the members;
	(ii) Draw the bending moment diagram, showing all important values;
	(iii) Determine the reactions;
	(iv) Determine the vertical deflection at D;
	(v) Draw the deflected shape of the structure.
	(25 marks)
	Note:
	Neglect axial effects in the flexural members and take the following values:
	 For the beam ABCD, ;
	 For members BF and CE, ;
	 For all members, .
	Ans. (for CE); 
	2.4.5 Semester 1 Exam 2010

	QUESTION 3
	For the frame shown in Fig. Q3, using Virtual Work:
	(i) Draw the bending moment diagram, showing all important values;
	(ii) Determine the horizontal displacement at C;
	(iii) Determine the vertical deflection at C;
	(iv) Draw the deflected shape of the structure.
	(25 marks)
	Note:
	Neglect axial effects in the flexural members and take the following values:
	 For the beam ABC, ;
	 For member BD,  and ;
	 The following integral results may assist in your solution:
	/
	Ans. (for BD); 
	2.4.6 Semester 1 Exam 2011

	QUESTION 3
	For the frame shown in Fig. Q3, using Virtual Work:
	(i) Draw the bending moment diagram, showing all important values;
	(ii) Draw the axial force diagram;
	(iii) Determine the vertical deflection at D;
	(iv) Draw the deflected shape of the structure.
	(25 marks)
	Note:
	Neglect axial effects in the flexural members and take the following values:
	 For the member ABCD, ;
	 For members BF and CE,  and ;
	 The following integral result may assist in your solution:
	Ans. (for BF); 
	2.5 Appendix – Trigonometric Integrals
	2.5.1 Useful Identities


	In the following derivations, use is made of the trigonometric identities:
	Integration by parts is also used:
	2.5.2 Basic Results

	Neglecting the constant of integration, some useful results are:
	2.5.3 Common Integrals

	The more involved integrals commonly appearing in structural analysis problems are:
	Using identity  gives:
	Next using , we have:
	And so:
	Using , we have:
	Next using :
	And so:
	Using , we have:
	Next using :
	And so:
	Using integration by parts write:
	Where:
	To give:
	And
	Which uses . Thus, from , we have:
	And so, using  we have:
	Using integration by parts write:
	Where:
	To give:
	And
	Which uses . Thus, from , we have:
	And so, using  we have:
	Using integration by substitution, we write  to give:
	Thus:
	And since, using :
	We have:
	Using integration by substitution, we write  to give:
	Thus:
	And since, using :
	We have:
	2.6 Appendix – Volume Integrals
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